• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of Astrocyte-Derived Sonic Hedgehog in Stimulation of Neural Stem Cell Proliferation Following Traumatic Brain Injury

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXOBrien-temple-0225E-130 ...
    Size:
    22.42Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    O'Brien, Jenny Alyssa
    Advisor
    Yang, Zeng-jie
    Soprano, Dianne R.
    Committee member
    Connolly, Denise
    Ramirez, Servio H.
    Black, Mark M.
    Department
    Cancer Biology & Genetics
    Subject
    Biology
    Cellular Biology
    Neural Stem Cells
    Sonic Hedgehog
    Traumatic Brain Injury
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3352
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3334
    Abstract
    Traumatic brain injury (TBI) is a major cause of disability worldwide. No effective treatment is currently available to restore function to the injured brain. After injury, massive neuronal death occurs which can result in long-lasting cognitive dysfunction. Following immediate mechanical damage, a series of secondary effects of injury occur including evolving neuronal damage, inflammation, astrocyte reactivation, blood brain barrier disruption and other physiological effects. Additionally, neural stem cell (NSC) proliferation has been observed following TBI, suggestive of an endogenous attempt to repair the brain. Stimulating proliferation of NSCs is a promising strategy to facilitate recovery following TBI, but the mechanisms underlying NSC proliferation remain unknown. In this work, we have addressed the following specific aims. In the first aim, we determined the role of Shh signaling in NSC proliferation after TBI. Using a fluid percussion model of TBI and conditional transgenic animal models, we investigated the role astrocytes play in NSC proliferation. Using a Sonic hedgehog (Shh) pathway inhibitor, we found that NSC proliferation after TBI relies on Shh signaling. In the second aim, we determined the role of astrocyte activation in NSC proliferation after TBI. Using transgenic tools, we determined that astrocytes are a major cellular source of Shh and that astrocyte-specific deletion of Shh inhibited NSC proliferation. This indicates that NSC proliferation relies on Shh signaling and that astrocytes represent the key cellular source. In the final aim, we sought to define the functional requirement of Nestin in NSC proliferation. Recent studies in our lab found that Nestin, an intermediate filament protein predominantly expressed by NSCs, played a role in Shh signaling in the setting of medulloblastoma cells. Here, we found that knockdown of Nestin impaired Shh signal transduction and Shh-driven proliferation in NSCs. Further, we generated a new mouse model allowing conditional deletion of Nestin in NSCs to determine whether Nestin played a similar role a non-neoplastic setting. Conditional deletion of Nestin in NSCs abolished the proliferation of hippocampal NSCs after TBI. These findings reveal the critical role of Nestin in Shh signaling and proliferation in NSCs following TBI. Our studies elucidate the cellular and molecular basis for NSC proliferation after TBI, which pave the road for development of therapeutic approaches to treat TBI by augmenting endogenous NSC regeneration.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.