• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Uniform exponential growth of non-positively curved groups

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXNg-temple-0225E-14070.pdf
    Size:
    742.5Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2020
    Author
    Ng, Thomas Antony
    Advisor
    Futer, David
    Committee member
    Stover, Matthew
    Taylor, Samuel J.
    Aougab, Tarik
    Department
    Mathematics
    Subject
    Mathematics
    Acylindrically Hyperbolic
    Cube Complex
    Growth of Groups
    Hierarchically Hyperbolic
    Non-positively Curved
    Uniform Exponential Growth
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3337
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3319
    Abstract
    The ping-pong lemma was introduced by Klein in the late 1800s to show that certain subgroups of isometries of hyperbolic 3-space are free and remains one of very few tools that certify when a pair of group elements generate a free subgroup or semigroup. Quantitatively applying the ping-pong lemma to more general group actions on metric spaces requires a blend of understanding the large-scale global geometry of the underlying space with local combinatorial and dynamical behavior of the action. In the 1980s, Gromov publish a sequence of seminal works introducing several metric notions of non-positive curvature in group theory where he asked which finitely generated groups have uniform exponential growth. We give an overview of various developments of non-positive curvature in group theory and past results related to building free semigroups in the setting of non-positive curvature. We highlight joint work with Radhika Gupta and Kasia Jankiewicz and with Carolyn Abbott and Davide Spriano that extends these tools and techniques to show several groups with that act on cube complexes and many hierarchically hyperbolic groups have uniform exponential growth.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.