• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluation of Small Unilamellar Vesicles as a Removal Method of Benzo[a]pyrene from Humic Substances in Soils

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXNawotka-temple-0225M-13 ...
    Size:
    1.055Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Nawotka, Alexis
    Advisor
    Kim, Bojeong
    Committee member
    Grandstaff, David E.
    Chemtob, Steven M.
    Department
    Geology
    Subject
    Environmental Science
    Soil Sciences
    Geology
    Contaminant
    Nanoparticle
    Remediation
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3333
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3315
    Abstract
    Polycyclic aromatic hydrocarbons (PAHs) are highly hydrophobic and lipophilic and are readily retained by soil surfaces and organic matter. Hence, several techniques have been developed in an effort to economically and effectively remove them from soil solids. Their strong affinity to soil organic matter limits their biodegradation processes by microorganisms, making them persistent in the soil environment. Recently, the use of “small unilamellar vesicles” (SUVs), nano-scale lipid aggregates, has been proposed as a means to enhance these microbial degradations, by effectively solubilizing lipophilic PAHs from the soil solids. In this thesis, laboratory-scale batch experiments were performed to examine this potential by measuring the uptake of benzo[a]pyrene (BaP), a model PAH compound, by SUVs from a simulated soil organic matter. This environmental surface was created by coating silica (SiO2) nanospheres with a layer of poly-L-lysine, followed by humic acid, and characterized by dynamic light scattering for particle size and zeta potential values. Then, these humic acid-bound SiO2 particles were saturated with BaP and then equilibrated with SUVs. The uptake of BaP by SUVs was measured through fluorescence spectroscopy, and the average amount of BaP concentrated in the 1 mg/L humic acid-bound SiO2 particles was found to be 1.77 µg/L. After one week of equilibration with SUVs, 94.4% and 83.6% of the added BaP was solubilized by SUVs (in solutions containing 50 mg/L and 100 mg/L of vesicles, respectively), indicating an excellent ability to extract BaP from the soil organic particles. SUVs can therefore be an effective vehicle to enhance the biodegradability of PAHs in soils, with potential as an environmentally sustainable and affordable method.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.