• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    ACQUISITION, PROCESSING, AND ANALYSIS OF DIFFUSION TENSOR IMAGING AND ATROPHY MRI IN THE INJURED PEDIATRIC SPINAL CORD

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXMiddleton-temple-0225E- ...
    Size:
    1.742Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2017
    Author
    Middleton, Devon
    Advisor
    Pleshko, Nancy
    Mohamed, Feroze B.
    Committee member
    Faro, Scott H.
    Ali, Sayed
    Department
    Bioengineering
    Subject
    Bioengineering
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3280
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3262
    Abstract
    Spinal cord injury has the potential to be debilitating, particularly in the pediatric population. Identification of the exact injury level can be difficult from conventional structural Magnetic Resonance Imaging (MRI) scans, and younger children often have difficulty in participating in the clinical examinations that define neurologic damage. Because of limitations of existing clinical examinations and conventional imaging, more advanced quantitative imaging techniques are important for improvement in diagnostic and prognostic evaluation of spinal cord injury. A quantitative characterization of the full spinal cord injury from both a functional and structural perspective has not been performed in pediatric subjects and has potential to provide important diagnostic and prognostic information. Diffusion tensor imaging (DTI) gives a non-invasive quantification of water diffusion in the spinal cord and can provide insight into white matter integrity, while high resolution volumetric imaging can determine cord cross sectional area reflecting atrophy occurring post injury. Multiple challenges exist in analysis of pediatric spinal cord data, including physiological motion, low signal-to-noise, thermal noise and image artifact, and cumbersome measurements of cord morphology. In this work, a complete pipeline for the acquisition and analysis of both functional DTI data and high resolution structural data is designed, tested, and implemented including MR image acquisition, motion correction, diffusion tensor estimation, region of interest analysis, and semi-automated cord cross sectional area measurement. Data for both healthy subjects and subjects with spinal cord injury is collected and significant correlations are shown between DTI and cord morphology metrics. This characterization of the injured spinal cord using both structural and functional data has the potential to offer important new information for examination of spinal cord injury.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.