• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Phagotrophy in Photosynthetic Eukaryotic Microbes from Polar Environments

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXMcKieKrisberg-temple-02 ...
    Size:
    6.501Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    McKie-Krisberg, Zaid Mahira
    Advisor
    Sanders, Robert W.
    Committee member
    Cordes, Erik E.
    Nicholson, Allen W.
    Gast, Rebecca J.
    Department
    Biology
    Subject
    Biology
    Biological Oceanography
    Ecology
    Algae
    Bacterivory
    Cryptophyte
    Micromonas
    Mixotrophy
    Prasinophyte
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3265
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3247
    Abstract
    Polar regions impose harsh conditions, including low temperatures, and prolonged periods of darkness on resident microbial communities. Despite these challenges, the conditions in these environments can also create opportunities for organisms utilizing combined trophic strategies (Mixotrophy). Only a limited number of studies have identified mixotrophic behavior in polar microbial eukaryotes, and even fewer studies have quantified the response of mixotrophs to likely environmental drivers of trophic behavior (light and nutrients). The goal of this work is to provide an identification of mixotrophic behavior and elucidate of some of the factors that influence algae isolated from polar environments. First, a study of the Arctic prasinophyte, Micromonas pusilla is presented in the first species-specific identification of mixotrophy in a eukaryotic phytoflagellate of this size class. M. pusilla grazed on bacteria under all experimental conditions, responding to nutrient limitation with increased rates of bacterivory. M. pusilla also showed evidence of prey selection. In contrast to the phagotrophic response, photosynthetic production was decreased under low-nutrient conditions. In an additional study of microbial eukaryotes from the Antarctic environment, identification of phagotrophy in photosynthetic nanoflagellates representing multiple evolutionary lineages: Cryptophyceae (Geminigera cryophila) and Prasinophyceae (Pyramimonas tychotreta and Mantoniella antarctica), showed that mixotrophy is more widespread in the Southern ocean that previously thought. G. cryophila and M. antarctica increased ingestions in dark treatments, but did not respond to difference in nutrient concentrations. In contrast, no significant grazing activity was observed in P. tychotreta under high nutrient conditions. When nutrients were reduced, ingestion of bacteria by P. tychotreta was observed and grazing increased in dark as compared to illuminated treatments. Finally, through a series of experimental assays, the competitive advantages of mixotrophic flagellates as opposed to monotrophic specialists were evaluated, using organisms isolated from the Southern Ocean. In these experiments, G. cryophila is emerged as a dominant competitor against two solely autotrophic diatoms (Fragilaria sp. and Fragilariopsis sp.). In contrast, P. tychotreta was outcompeted by the solely heterotrophic chrysophyte Paraphysomonas antarctica. These results show that mixotrophic ability can confer advantages to organisms in some cases, while in other interactions the cost associated with maintenance of multiple trophic strategies results in competitive exclusion by a specialist. These results present novel identification as well as rigorous investigation of mixotrophic behaviors in phototrophic flagellates from both polar (Arctic and Antarctic) environments representing two evolutionary lineages. This work provides a significant contribution to our understanding of the versatile nature of the physiology and trophic ecology of microbial eukaryotic organisms occupying polar marine ecosystems.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.