• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE EFFECTS OF OVERUSE ON CELLULAR, MOLECULAR AND MORPHOMETRIC BONE HOMEOSTASIS IN A VOLUNTARY REPETITIVE STRAIN INJURY RAT MODEL

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXMassicotte-temple-0225E ...
    Size:
    5.121Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Massicotte, Vicky S.
    Advisor
    Barbe, Mary F.
    Committee member
    Popoff, Steven N.
    Abood, Mary Ellen, 1958-
    Litvin, Judith
    Pleshko, Nancy
    Department
    Cell Biology
    Subject
    Cellular Biology
    Occupational Health
    Micro-computed Tomography
    Musculoskeletal
    Overuse Injury
    Rankl
    Sclerostin
    Wmsds
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3246
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3228
    Abstract
    Injuries of the hands and wrist are prevalent in many occupations requiring repetitive tasks and may be further aggravated by advancing age; these injuries are termed work related musculoskeletal disorders (WMSDs). Prior studies using an innovative operant rat model of reaching and grasping as a model of WMSDs demonstrated exposure dependent changes in forelimb bones of young adult rats performing repetitive tasks ≤ 3 months. No one has yet to examine if aging enhances forelimb bone degradative changes occurring with WMSDs, or if forelimb bones adapt or degrade further in response to moderate versus high demand repetitive tasks performed for prolonged time periods (up to 24 months). Bone remodeling is a normal biological process that allows bones to adjust to strains. Unfortunately, both aging and inflammation can deregulate the balance between bone resorption and formation. Aging mammals display increased baseline inflammatory-cytokine levels, both systemically and at the tissue level. Several inflammatory cytokines have been shown to stimulate osteoclastogenesis leading to bone resorption and reduced bone formation. We have reported increased production of inflammatory cytokines in serum and musculotendinous tissues of aged animals performing a repetitive reaching and grasping tasks for up to 12 weeks, warranting further examination of whether aged rats performing these tasks have increased bone resorptive changes, compared to young adult rats. We hypothesized that aging would enhance bone degradative changes in our model as a consequence of increased bone inflammatory responses to a moderate demand repetitive task. Therefore, our first aim was to examine forearm grip strength, trabecular and cortical bone quality, and inflammatory cytokine levels in radii of mature (14-18 mo of age) and young adult (2.5-6.5 mo of age) female Sprague Dawley rats after performance of a high repetition low force (HRLF) task for 12 weeks, compared to each other and age-matched controls. We found that mature rats performing a moderate demand repetitive task for 12 weeks had decreased bone formation and quality, particularly cortical bone quality, compared to young adult rats performing the same task, with increased inflammatory and decreased anti-inflammatory responses, and perhaps lower grip strength, as likely contributors. An adaptive bone response was observed in young adult animals performing a moderate level task of high repetition low force for 12 weeks. In contrast, a previous study showed bone degradative changes in young adult rats performing a high demand task of high repetition high force task for 12 weeks. Osteocytes are the mechanosensing cells of bones, and disruption or changes to their environment can lead to apoptosis or molecular changes. In models of forced bone loading to bone fatigue, osteocyte apoptosis increases sclerostin levels and osteoclast recruitment. Increased sclerostin also leads to increased RANKL production. In contrast, low level loading for a short period reduces sclerostin levels and encourages bone formation. We hypothesized that long-term muscle loading at high repetition low force loads would induce further bone adaptation, but that long-term high repetition high force muscle loading would result in detrimental bone loss, as well as alterations in these two bone remodeling proteins, RANKL and sclerostin. Therefore, our second aim was to determine if prolonged performance of a moderate demand upper extremity reaching and grasping task by young adult rats would continue to enhance forelimb bone formation and quality. We hypothesized that continued performance of a high repetition low force (HRLF) task for 24 weeks would lead to increased bone formation. We also hypothesized that RANKL and sclerostin, two proteins that have not been investigated in our rat model of WMSDs, would be reduced in rats performing a HRLF task for 24 weeks, as the bones reach adaptation. We found that 24 week HRLF rats showed several indices of bone formation and adaptation to the task; as well as reduced sclerostin immunoexpression, compared to controls, a reduction that likely contributed to the enhanced bone formation. To expand on this investigation, in our third aim, we investigated the impact of performance of a high repetition high force (HRHF) task for 18 weeks on young adult rat forelimb bones, and on sclerostin and RANKL levels. We observed detrimental trabecular bone remodeling in the radius, including decreased trabeculae bone volume, number and thickness, increased trabecular separation and anisotropy, and a transition to rod-shaped trabeculae in 18-week HRHF task animals, compared to food restricted control rats. In the 18-week HRHF rats, osteoclast numbers increased and osteoblast numbers decreased, concomitant with increased osteocyte apoptosis and empty lacunae, compared to control rats. Also, mRNA and protein levels of RANKL increased and sclerostin decreased in the 18-week HRHF rats, compared to to control rats. Thus, prolonged performance of a high demand task of high repetition high force induced detrimental trabecular bone changes. The increased RANKL likely contributed to these changes, and although sclerostin level decreased, a change that should contribute to enhanced osteoblast activity, bone formation was not rescued. In conclusion, prolonged performance of a HRLF task by young adult rats leads to reduced sclerostin levels and increased bone formation and bone quality. Aged rats performing the same HRLF task showed increased bone degradative changes that might increase fracture risk. In contrast, prolonged performance of a HRHF task by young adult rats leads to increased bone resorption and degradation, changes associated with RANKL expression. Sclerostin levels were reduced by the HRHF task, but failed to rescue bone formation.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.