• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    ACTIVATING NEURON-INTRINSIC GROWTH PATHWAYS TO PROMOTE SPINAL CORD REGENERATION AFTER DORSAL ROOT INJURY

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXManire-temple-0225E-130 ...
    Size:
    3.280Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Manire, Meredith A.
    Advisor
    Son, Young-Jin
    Committee member
    Selzer, Michael E.
    Smith, George M.
    Li, Shuxin
    Zhong, Jian
    Department
    Biomedical Sciences
    Subject
    Neurosciences
    Biological Sciences
    Axon
    B-raf
    Dorsal Root Injury
    Pten
    Regeneration
    Socs3
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3233
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3215
    Abstract
    Primary sensory axons fail to regenerate into the spinal cord following dorsal root injury leading to permanent sensory deficits. Re-entry is prevented at the dorsal root entry zone (DREZ), the CNS-PNS interface. Current approaches for promoting DR regeneration across the DREZ have had some success, but sustained, long-distance regeneration, particularly of large-diameter myelinated axons, still remains a formidable challenge. Our lab has previously shown that induced expression of constitutively active B-RAF (kaBRAF) enhanced the regenerative competence of injured DRG neurons in adult mice. In this study, I investigated whether robust intraspinal regeneration can be achieved by selective expression of kaBRAF alone or in combination with deletion of the myelin-associated inhibitors or neuron-intrinsic growth suppressors (PTEN or SOCS3). To this end, I used LSL-kaBRAF: brn3a-CreERT2 transgenic mice in which kaBRAF can be induced selectively in sensory neurons. I have also bred LSL-kaBRAF: brn3a-CreERT2 mice with triple knock-out mice lacking Nogo, Mag and OMgp or mouse lines carrying floxed alleles of PTEN or SOCS3. Single, double, and triple conditional mice were subjected to cervical DR crush and AAV2-eGFP vectors were used to selectively label regenerating axons of large-diameter neurons. I compared the extent of regeneration at 3 weeks or 2 months after DR injury using conventional anatomical and behavioral analyses. I found that kaBRAF alone promoted axon regeneration across the DREZ but did not produce significant functional recovery by two months. Supplementary deletion of Nogo, MAG, and OMgp did not improve kaBRAF-induced regeneration. Deletion of PTEN or SOCS3 individually or in combination failed to promote axon regeneration across the DREZ. In marked contrast, simultaneous deletion of PTEN, but not SOCS3, dramatically enhanced kaBRAF-mediated regeneration enabling many more axons to penetrate the DREZ and grow deep into the spinal cord. This study shows that dual activation of BRAF-MEK-ERK and PI3K-Akt signaling is an effective strategy to stimulate robust intraspinal DR regeneration and may lead to recovery of sensory function after DR injury.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.