• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    On the Design and Analysis of Cloud Data Center Network Architectures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXLi-temple-0225E-12710.pdf
    Size:
    3.553Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    Li, Dawei
    Advisor
    Wu, Jie, 1961-
    Shi, Justin Y.
    Committee member
    Wu, Jie, 1961-
    Shi, Yuan
    Ji, Bo, 1982-
    Department
    Computer and Information Science
    Subject
    Computer Science
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3193
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3175
    Abstract
    Cloud computing has become pervasive in the IT world, as well as in our daily lives. The underlying infrastructures for cloud computing are the cloud data centers. The Data Center Network (DCN) defines what networking devices are used and how different devices are interconnected in a cloud data center; thus, it has great impacts on the total cost, performances, and power consumption of the entire data center. Conventional DCNs use tree-based architectures, where a limited number of high-end switches and high-bandwidth links are used at the core and aggregation levels to provide required bandwidth capacity. A conventional DCN often suffers from high expenses and low fault-tolerance, because high-end switches are expensive and a failure of such a high-end switch will result in disastrous consequences in the network. To avoid the problems and drawbacks in conventional DCNs, recent works adopt an important design principle: using Commodity-Off-The-Shelf (COTS) cheap switches to scale out data centers to large sizes, instead of using high-end switches to scale up data centers. Based on this scale-out principle, a large number of novel DCN architectures have been proposed. These DCN architectures are classified into two categories: switch-centric and server-centric DCN architectures. In both switch-centric and server-centric architectures, COTS switches are used to scale out the network to a large size. In switch-centric DCNs, routing intelligence is placed on switches; each server usually uses only one port of the Network Interface Card (NIC) to connect to the switches. In server-centric DCNs, switches are only used as dummy cross-bars; servers in the network serve as both computation nodes and packet forwarding nodes that connect switches and other servers, and routing intelligence is placed on servers, where multiple NIC ports may be used. This dissertation considers two fundamental problems in designing DCN architectures using the scale-out principle. The first problem considers how to maximize the total number of dual-port servers in a server-centric DCN given a network diameter constraint. Motivated by the Moore Bound, which provides the upper bound on the number of nodes in a traditional graph given a node degree and diameter, we give an upper bound on the maximum number of dual-port servers in a DCN, given a network diameter constraint and a switch port number. Then, we propose three novel DCN architectures, SWCube, SWKautz, and SWdBruijn, whose numbers of servers are close to the upper bound, and are larger than existing DCN architectures in most cases. SWCube is based on the generalized hypercube. SWCube accommodates a comparable number of servers to that of DPillar, which is the largest existing one prior to our work. SWKautz and SWdBruijn are based on the Kautz graph and the de Bruijn graph, respectively. They always accommodate more servers than DPillar. We investigate various properties of SWCube, SWKautz, and SWdBruijn; we also compare them with various existing DCN architectures and demonstrate their advantages over existing architectures. The second problem focuses on the tradeoffs between network performances and power consumption in designing DCN architectures. We have two motivations for our work. The first one is that most existing works take extreme designs in terms of improving network performances and reducing the power consumption. Some DCNs use too many networking devices to improve the performances; their power consumption is very high. Other DCNs use two few networking devices, and their performances are very poor. We are interested in exploring the quantitative tradeoffs between network performances and power consumption in designing DCN architectures. The second motivation is that there do not exist important unified performance and power consumption metrics for general DCNs. Thus, we propose two important unified performance and power consumption metrics. Then, we propose three novel DCN architectures that achieve important tradeoff points in the design spectrum: FCell, FSquare, and FRectangle. Besides, we find that in all these three new architectures, routing intelligence can be placed on both servers and switches; thus they enjoy the advantages of both switch-centric and server-centric architectures, and can be regarded as a new category of DCN architectures, the dual-centric DCN architectures. We also investigate various other properties for our proposed architectures and verify that they are excellent candidates for practical cloud data centers.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.