• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Extensions of D-Optimal Minimal Designs for Mixture Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXLi-temple-0225E-11870.pdf
    Size:
    2.040Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Li, Yanyan
    Advisor
    Singh, Jagbir, Dr.
    Committee member
    Chervoneva, Inna
    Chitturi, Pallavi
    Krafty, Robert T.
    Altan, Stanley
    Department
    Statistics
    Subject
    Statistics
    D-optimal
    Interior Points
    Lack of Fit
    Minimal Designs
    Mixture Models
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3189
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3171
    Abstract
    The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-Optimal minimal designs have been considered for a variety of mixture models, including Scheffe's linear, quadratic, and cubic models. Usually, these D-Optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-Optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. In this dissertation, extensions of the D-Optimal minimal designs are developed to allow additional interior points in the design space to enable prediction of the entire response surface. First, the extensions of the D-Optimal minimal designs for two commonly used second-degree mixture models are considered. Second, the methodology for adding interior points to general mixture models is generalized. Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. When compared with the standard mixture designs, the proposed extended D-Optimal minimal design provides higher power for the Lack of Fit tests with comparable D-efficiency.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.