• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Turbidity and Nutrient Response to Storm Events in the Wissahickon Creek, Suburban Philadelphia, PA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXKanaley-temple-0225M-13 ...
    Size:
    6.005Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2018
    Author
    Kanaley, Chelsea Noelle
    Advisor
    Toran, Laura E.
    Committee member
    Chemtob, Steven M.
    Kim, Bojeong
    Department
    Geology
    Subject
    Geology
    Hydrologic Sciences
    Hydrology
    Nutrients
    Turbidity
    Urban Stream
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3082
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3064
    Abstract
    The Wissahickon Creek is an urban stream that runs through Montgomery and Philadelphia Counties and discharges to the Schuylkill River in Philadelphia. A majority of stream segments in the Wissahickon watershed are considered impaired by the USEPA due to sediment and nutrients. Total Maximum Daily Loads (TMDLs) were implemented in 2003 for nutrients (NO3-, PO43-, NO2-, and CBOD5) and siltation. A new TMDL for total phosphorus (TP) was proposed in 2015, despite minimal data on the effectiveness of the 2003 TMDLs. This new proposal was met with concern, suggesting more data must be collected to better understand impairment in the Wissahickon Creek. The purpose of this research was to study turbidity and nutrient responses to storm events, as storm events are known to contribute significant loads of both sediment and nutrients. Twelve sites were chosen for high frequency turbidity and water level monitoring along the Wissahickon Creek and one of its main tributaries, Sandy Run. These sites were selected around three of the major wastewater treatment plants (WWTPs) to determine the relative roles of WWTPs and overland flow as sources of turbidity and nutrients during storm events. The upstream site and first downstream site at each WWTP were monitored for nutrients during storms using high frequency loggers and ISCO automatic samplers. Stream assessments were done at each site to characterize in-stream physical parameters, bank vegetation, and algae cover. High frequency turbidity data suggests that the turbidity is locally sourced, as turbidity peaks at the same time as water level, or within an hour or two, at all sites regardless of storm size. Comparisons of the turbidity response with in-stream parameters and land cover helped determine that the main factor driving the turbidity response is discharge, although bank topping and impervious cover, particularly roads, may increase turbidity responses at some sites. Similarities in nutrient, turbidity, and conductivity responses upstream and downstream of the WWTPs strongly suggest that overland flow, not WWTP effluent, is the major source of nutrients and sediment during storm events. Finally, a strong relationship between total phosphorus and high turbidity suggests that only during high discharge events is there a significant increase in TP in the Wissahickon Creek. Results from this research identify the source of turbidity and nutrients to the Wissahickon Creek during storms as primarily coming from overland flow, that the primary factor controlling the turbidity response is discharge, with some secondary influence from over-banking and the contribution of roads to land use, and a close link between TP concentrations and sediment during storms in the stream.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.