• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    HIGH RESOLUTION LASER SPECTROSCOPIC STUDIES OF THE TRIPLET GROUND STATE, THE 23Πg STATE, AND THE COUPLED A~b STATES OF THE Rb2 DIMER MOLECULE

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXGuan-temple-0225E-11992.pdf
    Size:
    3.548Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Guan, Yafei
    Advisor
    Lyyra, A. Marjatta
    Committee member
    Yuen, Tan
    Metz, Andreas
    Spano, Francis C.
    Department
    Physics
    Subject
    Physics
    Diatomic
    Laser
    Spectroscopy
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2959
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2941
    Abstract
    The main focus of this work is using the infrared-infrared (IR-IR ) double resonance spectroscopic technique to study the 2³Πg, a³Σ⁺u triplet ground states, and the A¹Σ⁺u ~ b³Πu coupled states of the Rubidium dimer molecule. The initial analysis of the 2³Πg state involved separated analysis of the rotational and vibrational Bv and Gv functions to extract the molecular Dunham coefficients from the data. This was to avoid cross correlations between rotational and vibrational parameters because there was limited amount of rotational energy level data which included in addition perturbations between this state and other electronic states in the same region. An initial RKR potential energy curve was constructed based on this analysis. Subsequently this approach was augmented by a joint analysis of the 2³Πg state and the triplet ground state. This analysis was based on bound-free spectra, i.e. fluorescence from bound levels of the upper state to the continuum of the lower state. We present a comparison of these two approaches to the data analysis by testing the resulting potential energy functions through comparison of the calculated ro-vibrational energies against the observed energy level values The fluorescence from a discrete ro-vibrational level of the a bound upper state 2³Πg also includes transitions to discrete bound ro-vibrational levels of the triplet ground state (bound-bound emission). Accurate determination of the transition frequencies of the observed fluorescence spectroscopic lines allowed us to construct a reliable potential energy function that augmented our previous results on this state and corrected misinterpretation of that data in the literature. Similar infrared-infrared (IRIR) double resonance excitation of the 3¹Σ⁺g state was also used to observe resolved fluorescence spectra to the A~b states coupled by strong spin-orbit interaction. From the IRIR resolved fluorescence, we have filled the gap in the data range 12000cm-1 to 14000cm-1 of these coupled states for the Ω=0u⁺ component.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.