• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Dendritic Cell Response to Exogenous and Endogenous Danger Signals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXGallo-temple-0225E-12187.pdf
    Size:
    4.625Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2017
    Author
    Gallo, Paul Matthew
    Advisor
    Gallucci, Stefania
    Committee member
    Cohen, Philip L.
    Ganea, Doina
    Monestier, Marc
    Tükel, Çagla
    Sullivan, Kathleen E. (Professor of pediatrics)
    Department
    Microbiology and Immunology
    Subject
    Biomechanics
    Accounting
    Autoimmunity
    Immunology
    Infection
    Systemic Lupus
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2895
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2877
    Abstract
    Systemic lupus erythematosus (SLE) is complex autoimmune disease in which autoantibodies form against double stranded DNA (dsDNA) and nuclear antigens. Autoantigen immune complexes form, deposit in the vasculature, and cause multisystem organ damage. Both genetic and environmental factors contribute to the development of SLE. This thesis will explore three major themes found in the study of SLE: 1) Bacterial infection as an environmental trigger, 2) cytokine dysregulation in immune cells, and 3) the treatment of end organ damage in the form of lupus nephritis. Viral infections have long been associated with the development of systemic autoimmune disease, but the mechanisms by which chronic bacterial infections may promote autoimmunity remain unclear. In chapter three we show that a component of bacterial biofilms, the amyloid-like protein “curli”, irreversibly forms fibers with bacterial or eukaryotic DNA during biofilm formation. This interaction accelerates amyloid polymerization and creates potent immunogenic complexes that activate immune cells, including dendritic cells, to produce cytokines such as type I interferons, which are pathogenic in SLE. When given systemically, curli/DNA composites trigger immune activation and production of autoantibodies in lupus-prone and wild type mice. We also found that infection with curli-producing bacteria triggered higher autoantibody titers in lupus-prone mice compared to curli-deficient bacteria. These data provide a mechanism by which the microbiome and biofilm-producing enteric infections may contribute to the progression of SLE and point to a potential molecular target for treatment of autoimmunity. Cytokine dysregulation is also common in SLE patients. Serum cytokines are often elevated during active disease, including type I IFNs and IL-10. In chapter four we demonstrate that Il10 is a type I IFN response gene and has increased basal expression in dendritic cells (DCs) derived from pre-disease lupus-prone Sle1,2,3 mice. We show that Sle1,2,3-derived DCs overproduce IL-10 in response to TLR ligands and that this is the result of autocrine signaling though the type I IFN receptor (IFNAR). These results suggest that dysregulation of cytokine signaling in the myeloid compartment may contribute to IL-10 dysregulation in SLE. Renal disease remains a major cause of morbidity and mortality in SLE. A number of mouse models of chronic kidney disease have implicated the EGFR-family receptors in the progression of renal fibrosis and dysfunction. In chapter five we show that renal expression of ErbB2 is increased in murine lupus. We therefore asked if EGFR-family inhibition could prevent murine lupus nephritis. To test this possibility we used lapatinib, an EGFR-ErbB2 dual kinase inhibitor, in an IFN-accelerated model of murine lupus. We found that lapatinib administration lowered autoantibody levels but worsened renal disease. Lapatinib failure to treat murine lupus nephritis despite lowered autoantibody levels suggests EGFR-family signaling is required for tissue repair in the acute phase of kidney injury. Together this thesis clearly demonstrates the complexity of systemic autoimmune disease – bringing us to the crossroads of immunity and tolerance. The combination of both environmental triggers (e.g. bacterial infection) and genetic susceptibility (e.g. intrinsic cytokine dysregulation) leads to end organ damage (e.g. lupus nephritis). Here we sought to explore each aspect of disease progression in the hopes to develop better interventions for systemic autoimmune disease.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.