• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Generalized Empirical Bayes: Theory, Methodology, and Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXFletcher-temple-0225E-1 ...
    Size:
    1.503Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Fletcher, Douglas
    Advisor
    Mukhopadhyay, Subhadeep
    Committee member
    Izenman, Alan Julian
    Wei, William W. S.
    Hickman, Randal
    Obeid, Iyad, 1975-
    Department
    Statistics
    Subject
    Statistics
    Bayes-frequentist Workflow
    Distributed Learning
    Multidisciplinary Sciences
    Nonparametric Exploratory Modeling
    Uncertainty Modeling
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2865
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2847
    Abstract
    The two key issues of modern Bayesian statistics are: (i) establishing a principled approach for \textit{distilling} a statistical prior distribution that is \textit{consistent} with the given data from an initial believable scientific prior; and (ii) development of a \textit{consolidated} Bayes-frequentist data analysis workflow that is more effective than either of the two separately. In this thesis, we propose generalized empirical Bayes as a new framework for exploring these fundamental questions along with a wide range of applications spanning fields as diverse as clinical trials, metrology, insurance, medicine, and ecology. Our research marks a significant step towards bridging the ``gap'' between Bayesian and frequentist schools of thought that has plagued statisticians for over 250 years. Chapters 1 and 2---based on \cite{mukhopadhyay2018generalized}---introduces the core theory and methods of our proposed generalized empirical Bayes (gEB) framework that solves a long-standing puzzle of modern Bayes, originally posed by Herbert Robbins (1980). One of the main contributions of this research is to introduce and study a new class of nonparametric priors ${\rm DS}(G, m)$ that allows exploratory Bayesian modeling. However, at a practical level, major practical advantages of our proposal are: (i) computational ease (it does not require Markov chain Monte Carlo (MCMC), variational methods, or any other sophisticated computational techniques); (ii) simplicity and interpretability of the underlying theoretical framework which is general enough to include almost all commonly encountered models; and (iii) easy integration with mainframe Bayesian analysis that makes it readily applicable to a wide range of problems. Connections with other Bayesian cultures are also presented in the chapter. Chapter 3 deals with the topic of measurement uncertainty from a new angle by introducing the foundation of nonparametric meta-analysis. We have applied the proposed methodology to real data examples from astronomy, physics, and medical disciplines. Chapter 4 discusses some further extensions and application of our theory to distributed big data modeling and the missing species problem. The dissertation concludes by highlighting two important areas of future work: a full Bayesian implementation workflow and potential applications in cybersecurity.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.