• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    ROLE OF CKD AND CASPASE-1 IN NEOINTIMAL HYPERPLASIA DEVELOPMENT

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXFerrer-temple-0225M-119 ...
    Size:
    930.7Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Ferrer, Lucas Manuel
    Advisor
    Nelson, Deborah B.
    Committee member
    Parkman, Henry P.
    Choi, Eric T.
    Department
    Public Health
    Subject
    Health Sciences
    Caspase 1
    Chronic Kidney Disease
    Neointimal Hyperplasia
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2852
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2834
    Abstract
    Vascular access dysfunction is a cause of morbidity and mortality in chronic kidney disease (CKD) patients that require hemodialysis. The major cause of vascular access failure is venous stenosis due to neointimal hyperplasia (NH). Vascular smooth muscle cells (VSMC) are critical for the development of NH lesions, as they have the ability to modulate their phenotype from a "contractile" to a "synthetic" phenotype in the presence of uremia, through the regulation of sensor genes for uremia danger signals and VSMC-specific differentiation genes. Recent research indicates that Caspase-1 (casp-1) activation plays an essential role in sensing metabolic danger signal-associated molecular patterns and initiating vascular inflammation. Carbamylated LDL, a uremic toxin that has been shown to be found in higher levels in patients with CKD and in CKD murine models when compared to controls, and could play a role in casp-1 activation. Therefore, the goal of this project is to examine the role of cLDL/CKD-driven casp-1 activation in VSMC and CKD-related NH. We have established a CKD mouse model and published on CKD-associated vascular remodeling. We exposed wild type and caspase-1 knockout mice to our CKD model, analyzed and quantified the NH lesion formed. We also examined in vitro and ex-vivo changes in VSMC-specific differentiation genes when exposed to uremic serum and cLDL, in the presence or absence of caspase-1 inhibitor. We found that CKD serum induces with casp-1 activation and phenotypic changes in VSMCs from a "contractile" to a "synthetic" phenotype, which are reversed with casp-1 inhibition. In an ex-vivo model using relative quantification we found that VSMC contractile markers α -Actin, Calponin, SM-22, and Smoothelin gene expression of CKD mouse carotid VSMC were higher in casp-1 knockout mice when compared to wild-type (1.40, 1.28, 1.22, 1.41 respectively). Also using an in-vivo model, relative quantification of α-actin decreased from 1.0 to 0.329 when VSMCs were exposed to uremic serum and but increased back to 0.588 when Caspase-1 inhibitor is added. The relative quantification of Calponin also decreased from 1.0 to 0.394 when exposed to uremic serum and increased back to 0.601 with caspase-1 inhibitor. We also found that caspase-1 deficiency significantly reversed CKD-related vascular remodeling in casp-1 knockout mice and reduced NH volume by 50% from 1,440,023in wild-type mice to 71,069 µm2 in casp-1 knockouts (p-value 0.002). This evidence provides evidence that casp-1 plays a critical role in NH formation. Furthermore our results provide a novel insight over the therapeutic potential of casp-1 inhibitors for CKD induced NH and other inflammation induced vascular remodeling.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.