• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MATHEMATICAL MODELING OF CYANOBACTERIAL DYNAMICS IN A CHEMOSTAT

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXElMoustaid-temple-0225M ...
    Size:
    1.417Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2015
    Author
    El Moustaid, Fadoua
    Advisor
    Klapper, Isaac
    Committee member
    Zhang, Tianyu
    Seibold, Benjamin
    Department
    Mathematics
    Subject
    Mathematics
    Biology
    Bacterial Interactions
    Mathematical Modeling
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2827
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2809
    Abstract
    We present a mathematical model that describes how cyanobacterial communities use natural light as a source of energy and water as a source of electrons to perform photosynthesis and therefore, grow and co-survive together with other bacterial species. We apply our model to a phototrophic population of bacteria, namely, cyanobacteria. Our model involves the use of light as a source of energy and inorganic carbon as a source of nutrients. First, we study a single species model involving only cyanobacteria, then we include heterotrophs in the two species model. The model consists of ordinary differential equations describing bacteria and chemicals evolution in time. Stability analysis results show that adding heterotrophs to a population of cyanobacteria increases the level of inorganic carbon in the medium, which in turns allows cyanobacteria to perform more photosynthesis. This increase of cyanobacterial biomass agrees with experimental data obtained by collaborators at the Center for Biofilm Engineering at Montana State University.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.