• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ARCHITECTURE DESIGN FOR A NEURAL SPIKE-BASED DATA REDUCTION PLATFORM PROCESSING THOUSANDS OF RECORDING CHANNELS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXElaraby-temple-0225E-11 ...
    Size:
    3.296Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Elaraby, Nashwa
    Advisor
    Obeid, Iyad, 1975-
    Committee member
    Silage, Dennis
    Picone, Joseph
    Department
    Electrical and Computer Engineering
    Subject
    Electrical Engineering
    Engineering, Biomedical
    Fpga
    Neural Signal Processing
    Spike Detection
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2823
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2805
    Abstract
    Simultaneous recordings of single and multi-unit neural signals from multiple cortical areas in the brain are a vital tool for gaining more understanding of the operating mechanism of the brain as well as for developing Brain Machine Interfaces. Monitoring the activity levels of hundreds or even thousands of neurons can lead to reliable decoding of brain signals for controlling prosthesis of multiple degrees of freedom and different functionalities. With the advancement of high density microelectrode arrays, the craving of neuroscience research to record the activity of thousands of neurons is achievable. Recently CMOS-based Micro-electrode Arrays MEAs featuring high spatial and temporal resolution have been reported. The augmentation in the number of recording sites carries different challenges to the neural signal processing system. The primary challenge is the massive increase in the incoming data that needs to be transmitted and processed in real time. Data reduction based on the sparse nature of the neural signals with respect to time becomes essential. The dissertation presents the design of a neural spike-based data reduction platform that can handle a few thousands of channels on Field Programmable Gate Arrays (FPGAs), making use of their massive parallel processing capabilities and reconfigurability. For Standalone implementation the spike detector core uses Finite State Machines (FSMs) to control the interface with the data acquisition as well as sending the spike waveforms to a common output FIFO. The designed neural signal processing platform integrates the application of high-speed serial Multi-Gigabit transceivers on FPGAs to allow massive data transmission in real time. It also provides a design for autonomous threshold setting for each channel.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.