• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Bayesian Sparse Regression with Application to Data-driven Understanding of Climate

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXDas-temple-0225E-12079.pdf
    Size:
    1.369Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2015
    Author
    Das, Debasish
    Advisor
    Obradovic, Zoran
    Ganguly, Auroop R.
    Committee member
    Vucetic, Slobodan
    Latecki, Longin
    Department
    Computer and Information Science
    Subject
    Computer Science
    Climate Change
    Bayesian Sparse Regression
    Climate Change
    Dirichlet Process Mixtures
    Non-parametric Models
    Sparse Models
    Variational Inference
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2753
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2735
    Abstract
    Sparse regressions based on constraining the L1-norm of the coefficients became popular due to their ability to handle high dimensional data unlike the regular regressions which suffer from overfitting and model identifiability issues especially when sample size is small. They are often the method of choice in many fields of science and engineering for simultaneously selecting covariates and fitting parsimonious linear models that are better generalizable and easily interpretable. However, significant challenges may be posed by the need to accommodate extremes and other domain constraints such as dynamical relations among variables, spatial and temporal constraints, need to provide uncertainty estimates and feature correlations, among others. We adopted a hierarchical Bayesian version of the sparse regression framework and exploited its inherent flexibility to accommodate the constraints. We applied sparse regression for the feature selection problem of statistical downscaling of the climate variables with particular focus on their extremes. This is important for many impact studies where the climate change information is required at a spatial scale much finer than that provided by the global or regional climate models. Characterizing the dependence of extremes on covariates can help in identification of plausible causal drivers and inform extremes downscaling. We propose a general-purpose sparse Bayesian framework for covariate discovery that accommodates the non-Gaussian distribution of extremes within a hierarchical Bayesian sparse regression model. We obtain posteriors over regression coefficients, which indicate dependence of extremes on the corresponding covariates and provide uncertainty estimates, using a variational Bayes approximation. The method is applied for selecting informative atmospheric covariates at multiple spatial scales as well as indices of large scale circulation and global warming related to frequency of precipitation extremes over continental United States. Our results confirm the dependence relations that may be expected from known precipitation physics and generates novel insights which can inform physical understanding. We plan to extend our model to discover covariates for extreme intensity in future. We further extend our framework to handle the dynamic relationship among the climate variables using a nonparametric Bayesian mixture of sparse regression models based on Dirichlet Process (DP). The extended model can achieve simultaneous clustering and discovery of covariates within each cluster. Moreover, the a priori knowledge about association between pairs of data-points is incorporated in the model through must-link constraints on a Markov Random Field (MRF) prior. A scalable and efficient variational Bayes approach is developed to infer posteriors on regression coefficients and cluster variables.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.