• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    HIGH MODULI POLYMER GELS AND NON-AQUEOUS ELECTROLYTES WITH MUTLI-IONIC LITHIUM SALTS HAVING HIGH THERMAL STABILITY AND LITHIUM ION TRANSFERENCE NUMBERS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXCHEREDDY-temple-0225E-1 ...
    Size:
    9.041Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2020
    Author
    CHEREDDY, SUMANTH
    Advisor
    Wunder, Stephanie L.
    Committee member
    Sun, Yugang
    Zdilla, Michael J., 1978-
    Sahraei, Elham
    Department
    Chemistry
    Subject
    Chemistry
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2691
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2673
    Abstract
    Rechargeable Li-ion batteries play pivotal role in the growth of the market for portable electronic devices like mobile phones, laptops etc. Several key drawbacks with the Lithium-ion Batteries (LIBs) put a limitation on their use in more advanced applications especially, those that require more power output and rapid charging times such as electric vehicles. One issue is the safety concerns that arise due to the growth of lithium dendrites especially at rapid charging conditions, leading to fire hazards at extreme thermal runaway scenarios. Another issue is that the current state of the art LIBs are fast approaching their maximum theoretical energy density limits. The energy density of the present-day LIBs is insufficient to deliver satisfactory performance especially when used in advanced applications such as electric vehicles which require long driving range per charge. One possible approach suggested to increase the energy density of the battery is by replacing intercalated graphite anode with lithium metal which has greater theoretical capacity. Utilizing lithium metal would open the possibility to use cathodes with conversion chemistry that would store more charge per cycle and there by resulting in the overall increase in the energy density of the battery. One of the key issues impeding the commercialization of Li-metal batteries is safety. Safety issues arises due to the uneven deposition of Li on the surface of the Li metal which would give rise to needle like protrusions (dendrites) that are capable of piercing the separator and reaching all the way to cathode. The result is an internal short circuit of the cell , which ultimately results in fire or explosion. There are many solutions that have been proposed over the years, courtesy of some extensive theoretical and experimental research to tackle the issue of dendrite growth. This thesis describes about the research work along the lines of a couple of possible approaches to prevent the dendrite growth. The first approach to be discussed is the development of solid electrolytes/separators to address this safety issue. The major drawback with most of the solid electrolytes/separators is that they have very low conductivity and lithium ion transference number (tLi+)values. Transference number of an ion by definition is the fraction of current carried by that particular ion, here in the case of LIBs is Li+, out of the total current carried by all the ions in the solution. Ideally a tLi+ of unity is aspired. The goal was to develop solid electrolytes having good room temperature conductivity and high transference numbers and at the same time having good mechanical strength. To that extent high moduli polymer gel electrolytes with high thermal stability were developed by in-situ encapsulation of ionic liquids and solvate ionic liquids into nanofibrillar methyl cellulose networks. The separators/iongels prepared possessed good room temperature conductivity and lithium ion transference numbers. The other approach described is developing non-aqueous liquid electrolytes having high ionic conductivity and high Li+ transference numbers (tLi+). Electrolytes with high tLi+ are efficient in minimizing the concentration polarization and ultimately mitigating the dendrite growth. As a part of this approach a functionalized symmetric, multi-ionic polyhedral oligomeric silsesquioxane (POSS) with dissociative lithium salt (POSS-(LiNSO2CF3)8 ) salt was dissolved in tetraglyme (G4), CH3–O–(CH2CH2O)4–CH3 in a specific O/Li ratio and the solution mixture was used as a electrolyte. Good ionic conductivities (σ10-4 S cm-1) and lithium ion transference numbers of tLi+= 0.65 are achieved in these electrolyte systems.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.