• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CHARACTERIZATION OF THE ROLE AND UNDERLYING MECHANISMS OF TRAUMATIC BRAIN INJURY ON REWARD SEEKING BEHAVIOR USING PRECLINICAL ANIMAL MODELS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXCannella-temple-0225E-1 ...
    Size:
    28.81Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Cannella, Lee Anne
    Advisor
    Ramirez, Servio H.
    Committee member
    Unterwald, Ellen M.
    Rawls, Scott M.
    Barbe, Mary F.
    Bangasser, Debra A.
    Department
    Biomedical Sciences
    Subject
    Neurosciences
    Adolescence
    Animal Models
    Behavior
    Neuroinflammation
    Substance Use Disorders
    Traumatic Brain Injury
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2660
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2642
    Abstract
    Traumatic brain injury (TBI) is a prominent healthcare concern in the U.S. as millions of TBI-related emergency department visits occur annually. Recent reports estimate more than 5 million Americans currently suffer from life-long disabilities and psychiatric complications associated with TBI. While the risk of TBI has conventionally been considered to be male dominated, analyses of sex-comparable sports indicate that rates of concussions are higher and recovery time is longer following brain injury in females. Following anxiety and depression, substance use disorder (SUD) is the third most common de-novo neuropsychiatric condition diagnosed in both male and female TBI patients. Importantly, during adolescence the primary neuronal networks that regulate reward behaviors and perception of drug-induced euphoria are not fully developed, corroborating epidemiological studies identifying TBI sustained during adolescence as a risk factor for problematic drug use. Yet, to date, little is known about how TBI-induced molecular changes affect brain structures essential for the perception of reward and processing drug-induced euphoria. The following experiments were designed to test the hypothesis that adolescent TBI-induced neuroinflammation in areas such as prefrontal cortex (PFC) and nucleus accumbens (NAc) results in remodeling of neuronal reward networks and affect how the rewarding effects of cocaine shift as a consequence of TBI. Notably, the extent of sex differences in SUD susceptibility in TBI has not be investigated. Therefore, we also investigated whether the immune response stimulated by early-life TBI alters maturation of reward neurocircuits, leading to increased SUD vulnerability in a sex-dependent manner. Following the induction of TBI using the controlled cortical impact (CCI) model of brain injury, we utilized a biased, three-phased cocaine conditioned place preference (CPP) assay to assess the behavioral response to the rewarding effects of cocaine following adolescent injury in male and female C57BL6 mice. Furthermore, we characterized the effect of CCI-TBI on the stimulation of neuroinflammation within the PFC and NAc, comprising the reward pathway. Specifically, our studies revealed a sex-specific increase in 1) sensitivity to the rewarding efficacy of a subthreshold doses of cocaine interpreted from significantly higher cocaine CPP shifts, 2) the activation and phagocytosis of microglia observed by the positive expression of neuronal synaptic proteins in microglia sorted using flow cytometry, 3) increase in permeability of the blood-brain barrier indicated by discontinuous and depleted expression of tight junction proteins that line microvasculature isolated from reward nuclei, 4) decreased neuronal complexity, arborization, and spine density quantified from Golgi-cox stained NAc neurons, 5) changes in expression of genes related to the dopamine system analyzed by qRT-PCR in only male mice injured during adolescence. Additionally, our results imply that high levels of female hormones can promote neuroprotection against increased sensitivity to the rewarding properties of cocaine following injury, associated with decreased neuroinflammatory profiles after TBI in adolescent females. The studies herein aimed to elucidate underlying neuropathological outcomes following TBI in the reward circuitry that could be contributing to increased risk of addiction-like behavior observed clinically. Our findings suggest that TBI during adolescence may enhance the abuse liability of cocaine in adulthood and vulnerability to the rewarding effects of cocaine could be higher as a result of brain injury. Key pathological findings in the NAc such as activated microglial phagocytosis, BBB changes, reduced neuronal complexity, and changes in dopamine gene expression in areas of the reward pathways support the notion that neuroinflammation may contribute to how the rewarding efficacy of cocaine are affected post-TBI during adolescence. The ultimate goal of this research is to 1) advance TBI and SUD literature with the potential to increase awareness and help health care providers inform TBI patients about the increased risk for SUDs, and 2) to translate identified correlated mechanisms into novel targeted therapies that would provide a launching point for the treatment of patients with TBI-related SUD.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.