• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Probing the Surface- and Interface-Sensitive Momentum-Resolved Electronic Structure of Advanced Quantum Materials and Interfaces

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXArab-temple-0225E-13666.pdf
    Size:
    4.906Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Arab, Arian
    Advisor
    Gray, Alexander X.
    Committee member
    Xi, Xiaoxing
    Riseborough, Peter
    Strongin, Daniel R.
    Department
    Physics
    Subject
    Physics, Condensed Matter
    Arpes
    Hard X-ray
    Heterostructure
    Kondo Insulators
    Nickelates
    Photoemission
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2558
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2540
    Abstract
    In this dissertation, we used a combination of synchrotron-based x-ray spectroscopic techniques such as angle-resolved photoelectron spectroscopy (ARPES), soft x-ray ARPES, hard x-ray photoelectron spectroscopy (HAXPES), and soft x-ray absorption spectroscopy (XAS) to investigate momentum-resolved and angle-integrated electronic structure of advanced three- and two-dimensional materials and interfaces. The results from the experiments were compared to several types of state-of-the-art first-principles theoretical calculations. In the first part of this dissertation we investigated the effects of spin excitons on the surface states of samarium hexaboride (SmB6), which has gained a lot of interest since it was proposed to be a candidate topological Kondo insulator. Here, we utilized high-resolution (overall resolution of approximately 3 meV) angle-resolved and angle-integrated valence-band photoemission measurements at cryogenic temperatures (1.2 K and 20 K) to show evidence for a V-shap
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.