• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design and delivery of selective inhibitors of tumor overexpressed isozymes of carbonic anhydrase- towards new theranostic systems for cancer detection and treatment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXAKOCAK-temple-0225E-119 ...
    Size:
    3.100Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    AKOCAK, SULEYMAN
    Advisor
    Ilies, Marc A.
    Committee member
    Borenstein, Michael R.
    Canney, Daniel J.
    Mesaros, Eugen
    Department
    Pharmaceutical Sciences
    Subject
    Pharmaceutical Sciences
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2536
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2518
    Abstract
    Cancer is the second most common cause of death and a major cause of mortality in the world. The high mortality associated with cancer is due to the fact that usually it is discovered too late, when it is metastasized to different organs and is very hard to cure. Finding more efficient, convenient and selective ways for early diagnosis and eradication of pre-malignant or malignant tumors of small dimensions is a task of utmost importance. The development of many malignant tumors was associated with hypoxia and the over-expression of specific membrane-bound carbonic anhydrase (CA) isozymes CA IX and CA XII. Malignant tissue of relatively small dimensions can grow fast and can invade the surrounding tissues by reverting to anaerobic metabolism and by acidifying the extracellular milieu around the tumor, increasing its invasiveness. Our goal is to detect and treat malignant hypoxic tumors using selective inhibitors of CA IX and CA XII and the objective of this thesis was to develop selective and efficient carbonic anhydrase inhibitors (CAIs) for the tumoral CA IX and CA XII that will leave unaltered the normal tissues. Two new sets of membrane-impermeant carbonic anhydrase inhibitors are proposed to be developed based on pyridinium positively-charged moieties attached to know CAI pharmacophores. Our guiding hypothesis was that modulation of carbonic anhydrase potency and tissue penetrability is possible to be achieved via fine tuning of pyridinium substitution. The use of appropriate substitutents on the pyridinium ring allowed the creation of CAI with special optical properties (e.g. fluorescence). The rationale for the research summarized in this thesis was that a CAI selective for membrane isozymes CA IX and CA XII over-expressed in cancer with controlled tissue penetrability can open new avenues in cancer early detection and treatment that will complement and/or potentiate present technologies and therapies.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.