• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SF-1, BUT NOT DAX-1, PREVENTS P19 CELLS FROM DIFFERENTIATING TO EITHER TROMA-1 OR TUJ1 POSITIVE CELLS UPON RA-TREATMENT

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Teets_temple_0225E_10685.pdf
    Size:
    10.84Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2011
    Author
    Teets, Bryan Wilson
    Advisor
    Soprano, Dianne R.
    Committee member
    Gamero, Ana
    Stitt, Barbara L.
    Suhadolnik, Robert J., 1925-
    Department
    Biochemistry
    Subject
    Biochemistry
    Adrenal
    Differentiation
    Neuronal
    P19
    Pbx
    Vitamin A
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2513
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2495
    Abstract
    Retinoic acid (RA) is critical for embryonic development and cell differentiation. Previous work in our laboratory has shown that blocking the RA-dependent increase in Pre-â cell leukemia transcription factors (PBX) mRNA and protein levels in P19 cells prevents them from differentiating to either endodermal or neuronal cells. This suggests that PBX is an important regulator of RA-induced differentiation of P19 cells. A microarray analysis was performed to identify PBX regulated genes, utilizing the empty vector P19 (TO3) and antisense to PBX (AS2) cell lines, during RA-induced differentiation of P19 cells into endodermal or neuronal cells. Among the genes identified by the microarray, Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1) and steroidogenic factor 1 (SF-1) were identified to be directly or indirectly regulated by PBX. Both DAX-1 and SF-1 proteins have only recently been reported to be present in preimplantation mouse embryos prior to the expression of steroidogenic enzymes, suggesting they may play a role in early mouse embryogenesis. To determine the roles of DAX-1 and SF-1 during RA-dependent differentiation, P19 cells that inducibly express either FLAG-DAX-1 or FLAG-SF-1 upon removal of doxicyclin were prepared. We found that overexpression of FLAG-DAX-1 had no effect on the RA-induced differentiation of P19 cells. However, FLAG-SF-1 overexpression prevented the RA-dependent loss of Oct-4, DAX-1 and the increase in COUP-TFI, COUP-TFII, and Ets-1 mRNA levels during the commitment stages of both endodermal and neuronal differentiation. Surprisingly, continued expression of SF-1 for seven days caused a RA-independent loss of Oct-4 protein. However, cells which continued to express SF-1 for seven days did not terminally differentiate into endodermal or neuronal cells in response to RA treatment. In addition, we found evidence for a feedback loop, where PBX reduces SF-1 mRNA expression and continued SF-1 expression blocks the RA-dependent increase in PBX protein levels. Our findings suggest that SF-1 plays a novel role in P19 cells where its level of expression is critical for the differentiation state of the cells. At basal levels SF-1 maintains the pluripotent state of the cells, while SF-1 levels must be dramatically reduced for cells to differentiate into both endodermal and neuronal cells upon RA treatment. However, at elevated levels above basal, SF-1 inhibits Oct-4 expression and leads to the induction of the expression of steroidogenic enzymes with a pattern consistent with adrenal cells in a RA-independent fashion. Taken together these data suggest that SF-1 plays a much more dynamic role in P19 cells than previously reported.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.