• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    PHOTOINITIATED-PROCESSES IN ADENINE OLIGONUCLEOTIDES: EXAMINING THE NATURE OF π-STACKING INTERACTIONS IN MULTI-CHROMOPHORE SYSTEMS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Spata_temple_0225E_12538.pdf
    Size:
    13.99Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    Spata, Vincent Anthony
    Advisor
    Matsika, Spiridoula
    Committee member
    Spano, Francis C.
    Stanley, Robert J.
    Perdew, John P.
    Department
    Chemistry
    Subject
    Chemistry, Physical
    Adenine
    Dna
    Photophysics
    Quantum Chemistry
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2444
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2426
    Abstract
    DNA provides the genetic code which is almost universal in all living organisms. When DNA is exposed to ultra-violet light it can cause cell degradation and mutation which are two of the major causes which lead to cancer. The nature of decay in DNA oligomers is a widely studied topic. Fluorescence and Transient Absorption (TA) experiments on polynucleotides which compare the behavior of the decay to the monomer bases have revealed the presence of longer-lived components in the multimeric systems. There has been heated debate over the character of the excited states responsible for the long-lived signals. Theoretical methods are well suited to compliment experiment by providing a description of processes and physical properties on the molecular level. We have studied π-stacked adenines in the gas-phase with Quantum Mechanical (QM) methods, but also in the helical environment using high-level ab initio methods, classical simulations and the combination of the two (QM/MM). Inclusion of the environmental interactions dramatically alters the shape of the potential energy surfaces due to steric interactions from the backbone and interactions with the surrounding bases and environment. This work examines the complete picture of photophysical processes occurring in adenine oligonucleotides within the helical environment after the absorption of a photon: the nature of initial absorption and the subsequent radiative and non-radiative decay pathways. It contributes key discoveries inherent to the mechanisms which govern photo-initiated processes in DNA, and also contributes to our fundamental knowledge of the photophysical behavior of π-stacked chromophores. The work reveals the effects of π-stacking interactions and the environment on photo-initiated processes in oligonucleotides. It reveals that excitonic coupling is responsible for the key differences in features in the absorption spectrum of adenine oligomers compared to the isolated bases, illustrates the role of charge transfer (CT) mixing in both absorption and decay processes, and the importance of bonded excimers in deactivation. The work also illustrates that CT excimers are responsible for the long-lived signals evidenced in Transient Absorption and Fluorescence experiments and that neutral excimers can exist within the DNA helical environment. It also adds to the discussion in the field on the nature of photodecay mechanisms occurring within the DNA helix.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.