• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of Mu Opioid Receptors in the Behavioral Effects of Cocaine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Soderman_temple_0225E_10028.pdf
    Size:
    2.061Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2008
    Author
    Soderman, Avery Rune
    Advisor
    Unterwald, Ellen M.
    Committee member
    Cowan, Alan, 1942-
    Dun, Nae J.
    Kirby, Lynn
    Liu-Chen, Lee-Yuan
    Stojanovic, Susulic Vedrana
    Department
    Pharmacology
    Subject
    Health Sciences, Pharmacology
    Biology, Neuroscience
    Cocaine
    Hyperlocomotion
    Mu-opioid R
    Nucleus Accumbens
    Reward
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2424
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2406
    Abstract
    Animal models have proven to be useful tools for modeling human neurochemical and behavioral responses to drugs of abuse, including cocaine. Cocaine is a psychomotor stimulant that facilitates monoaminergic neurotransmission by binding to transporters and inhibiting the reuptake of dopamine, serotonin and norepinephrine into presynaptic neurons. Many of the behavioral effects of cocaine, including its locomotor-activating and reinforcing properties, have been attributed to the ability of cocaine to enhance dopaminergic activity. In addition to its direct effects on monoamine neurotransmitters, cocaine impacts other neurotransmitter systems including the endogenous opioid system. The effects of selectively antagonizing mu opioid receptors on cocaine-induced behaviors were evaluated during this research. This research also evaluated the effect of selectively antagonizing dopamine D1 or D2 receptors on cocaine-induced mu opioid receptor occupancy by endogenous opioid ligands. This research furthered our understanding of how the endogenous opioid and dopaminergic systems interact to mediate cocaine-induced behaviors. Although data support the role of mu opioid receptors in modulating cocaine-mediated locomotion and reward, the location of the mu opioid receptors involved has not been established. An evaluation of the effects of a selective mu opioid receptor antagonist administered directly into specific brain regions on cocaine-induced behaviors is important for understanding how the endogenous opioid and dopaminergic systems interact to mediate cocaine-induced behaviors. The studies outlined herein sought to determine the contribution of mu opioid receptors in specific regions of the mesocorticolimbic system to the rewarding and locomotor-activating effects of cocaine in the rat. In addition, to further understand the role of mu opioid receptors in cocaine reward, neuronal activation was studied via cFos activation following the expression of cocaine-induced place preference. Results of the research outlined herein demonstrate the importance of mu opioid receptors in cocaine-induced reward and activity, and demonstrate the anatomical selectivity of mu receptors within the nucleus accumbens, VTA and caudate putamen in this regard. These data suggest that cocaine causes the release of endogenous opioid peptides and that these peptides contribute to the rewarding and locomotor-stimulating effects of cocaine. Further, these data also suggest that opioid peptides are released in the nucleus accumbens shell during the expression of cocaine place preferences and that mu opioid receptors in this region are critical for the manifestation of this behavior. Although data demonstrate that extracellular levels of endogenous opioid peptides are increased following cocaine administration, the time- and dose-dependent occupancy of mu opioid receptors within specific brain regions had not been established in previous studies. The present research sought to determine the time- and dose-dependent occupancy of mu opioid receptors, measured indirectly by displacement of 3H-DAMGO binding, within specific brain regions. 3H-DAMGO binding was measured by in vitro autoradiography. In addition, the contribution of dopamine D1 and D2 receptors in cocaine-induced 3H-DAMGO displacement was evaluated. Results demonstrate that cocaine administration caused a dose- and time-dependent displacement of 3H-DAMGO binding to mu opioid receptors within the nucleus accumbens core and shell. This displacement was attenuated by pretreatment with a selective D2 dopamine receptor antagonist, demonstrating that cocaine, acting via D2 dopamine receptors, can cause the release of an endogenous opioid peptide that binds to mu opioid receptors within the nucleus accumbens core and shell. Previous studies have demonstrated that chronic administration of non-selective mu opioid receptor antagonists has profound effects on mu opioid receptor density and signaling. The research presented herein sought to determine whether chronic treatment with the selective mu opioid receptor antagonist, CTAP, would increase mu opioid receptor density and agonist-stimulated G-protein activation. In addition, this research sought to determine whether chronic CTAP administration would sensitize animals to the locomotor stimulating effects of cocaine. Results outlined herein demonstrate that chronic CTAP treatment sensitized animals to the locomotor effects of cocaine and that this sensitization occurred in conjunction with an increase in mu opioid receptor density within the nucleus accumbens core and shell.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.