• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Structural and Functional Analysis of the MthK K+ Channel RCK Domain

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Smith_temple_0225E_11537.pdf
    Size:
    7.496Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2013
    Author
    Smith, Frank J.
    Advisor
    Rothberg, Brad S.
    Committee member
    Soboloff, Jonathan
    Giangiacomo, Kathleen
    Chong, Parkson Lee-Gau
    Department
    Biochemistry
    Subject
    Biochemistry
    Biophysics
    Ca2+
    K+ Channel
    Mthk
    Rck
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2415
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2397
    Abstract
    Regulator of K+ conductance (RCK) domains control the activity of a variety of K+ channels and transporters, including the prokaryotic TrkA/H K+ transport complex and the eukaryotic BK channel, through binding of cytoplasmic ligands such as ATP, H+, and Ca2+. Thus RCK domains transduce ligand binding to gate transmembrane K+ flux in response to signaling events and cellular metabolism, in organisms ranging from bacteria to humans. In this work, I utilize the prokaryotic RCK domain containing K+ channel, MthK as a model system to provide insight toward the structural basis of ion channel gating by RCK domains. In MthK, binding of Ca2+ to an octameric ring of RCK domains (the gating ring) which is tethered to the pore of the channel, leads to a series of conformational changes that facilitates channel opening and K+ conduction. Using electrophysiology and X-ray crystallography, I identify the presence of additional Ca2+ binding sites in the MthK RCK domain, showing that each RCK domain contributes to three different regulatory Ca2+ binding sites, two of which are located at the interfaces between adjacent RCK domains. The additional Ca2+ binding sites, resulting in a stoichiometry of 24 Ca2+ ions per channel, is consistent with the steep relation between [Ca2+] and MthK channel activity. Comparison of Ca2+ bound and unliganded RCK domains suggests a physical mechanism for Ca2+-dependent conformational changes that underlie gating in this class of channels. To gain insight toward mechanisms of RCK domain activation, I crystallized and solved the structure of the RCK domain of MthK bound with Ba2+. The Ba2+-bound RCK domain was assembled as an octomeric gating ring, as observed in structures of the full-length MthK channel, and shows Ba2+ bound at several positions, one of which overlaps with a known Ca2+ binding site. Functionally, I determined that Ba2+ could activate reconstituted MthK channels as observed in electrophysiological recordings. These results suggest a working hypothesis for a sequence of ligand-dependent conformational changes that may underlie RCK domain activation and channel gating. In an effort to more accurately describe the Ca2+-dependent gating process in MthK, I crystallized and solved structures of mutant and wild-type RCK domains, and found that distinct Ca2+ activation sites near the N- and C-termini of the RCK domain (termed C1 and C3, respectively) are allosterically coupled to one another, to affect tuning of Ca2+ affinity and Ca2+-dependent channel activation. These results define a structural mechanism of allosteric modulation in a ligand-gated K+ channel, and provide a framework for understanding similar mechanisms in related RCK-containing channels and transporters.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.