• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AN EXTENSION OF PLANARIAN BEHAVIORAL MODEL: CANNABINOID PHYSICAL DEPENDENCE AND WITHDRAWAL

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sheng_temple_0225M_12579.pdf
    Size:
    1.726Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    Sheng, Wanhui
    Advisor
    Raffa, Robert B.
    Committee member
    Raffa, Robert B.
    Walker, Ellen A.
    Rawls, Scott M.
    Department
    Pharmaceutical Sciences
    Subject
    Pharmaceutical Sciences
    Pharmacology
    Cannabinoid
    Physical Dependence
    Planarian
    Withdrawal
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2367
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2349
    Abstract
    Background: Planarians have mammalian-like neurotransmitter systems and have been established as a novel in vivo model for neuropharmacology. In previous research, planarians exposed to the cannabinoid receptor (CB-R) agonist WIN 55,212-2 (10 μmol/L) for 1 h displayed a significant (p < 0.05) decrease in spontaneous locomotor velocity (pLMV) when subsequently tested in drug-free, but not in drug-containing, water. This demonstrated abstinence-induced withdrawal from a CB-R agonist as a manifestation of the development of physical dependence. Purpose: The purpose of the present study was to extend previous work and to further establish a cannabinoid behavioral model with planarians. Specifically, the goals included (i) confirm the work with WIN 55,212-2 and extend to a second agonist (ii) interfere with agonist-induced physical dependence using several CB-R antagonists, (ii) demonstrate antagonist-induced precipitated withdrawal behavior, and (iii) try to induce withdrawal behavior from CB-R agonists using UV light. Methods: Two CB agonists (WIN 55,212-2 and JWH251) and four CB antagonists (AM251, AM281, SLV319 and SR144528) were used. Planarians were placed individually in CB-R agonist or agonist + antagonist mixtures for 20 and 30 min of exposure (with or without UV radiation), and withdrawal was quantified by measuring pLMV in drug-free vs drug-containing water (with or without UV light irradiation). Results: (i) Four different CB1-R antagonists (AM251, AM281, SLV319 and SR144528) dose-relatedly blocked development of physical dependence induced by two different CB-R agonists (WIN 55,212-2 and JWH251). (ii) None of the same four antagonists (AM251, AM281, SLV319 and SR144528) precipitated withdrawal. (iii) Short wavelength (254 nm), but not long wavelength (366 nm), UV light attenuated abstinence-induced withdrawal from WIN 55,212-2, while short wavelength UV light induced moderate withdrawal behavior. Conclusions: The results confirm the use of a planarian model as a simple yet robust way to study development of physical dependence to cannabinoid agonists. The model is more rapid and sensitive than the usual rodent models. The effect of UV irradiation adds to the supposition that the results are receptor-related. The results also give rise to the surprising suggestion, within the limitations of the methodology, that development of cannabinoid physical dependence and antagonist-induced precipitated withdrawal might be separable phenomena in planarians.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.