• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of C3-C4 Propriospinal Interneurons on Reaching and Grasping Behaviors Pre- and Post-Cervical Spinal Cord Injury

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sheikh_temple_0225E_13195.pdf
    Size:
    5.392Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2018
    Author
    Sheikh, Imran Sana
    Advisor
    Smith, George M.
    Committee member
    Selzer, Michael E.
    Gallo, Gianluca
    Li, Shuxin
    Unterwald, Ellen M.
    Lemay, Michel A.
    Department
    Biomedical Sciences
    Subject
    Neurosciences
    Forelimb
    Grasping
    Propriospinal Interneuron
    Reaching
    Spinal Cord Injury
    Spontaneous Recovery
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2365
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2347
    Abstract
    Greater than 50% of all spinal cord injuries (SCIs) in humans occur at the cervical level and the biggest desire of quadriplegic patients is recovery of hand and digit function. Several weeks after spinal cord injury, re-organization and re-modeling of spared endogenous pathways occurs and plasticity of both supraspinal and interneuronal networks are believed to mediate functional recovery. Propriospinal interneurons (PNs) are neurons found entirely in the spinal cord with axons projecting to different spinal segments. PNs function by modulating locomotion, integrating supraspinal motor pathways and peripheral sensory afferents. Recent studies have postulated that if PNs are spared following SCI, these neurons can contribute to functional recovery by establishing synaptic connections onto motor neurons. However, to what extent cervical PNs are involved in recovery of reaching behavior is not known. In our first study, we generated a lentiviral vector that permits highly efficient retrograde transport (HiRet) upon uptake at synaptic terminals in order to map supraspinal and interneuronal populations terminating near forelimb motoneurons (MNs) innervating the limb. With this vector, we found neurons labeled within the C3-C4 spinal cord and in the red nucleus, two major populations which are known to modulate forelimb reaching behavior. We also proceeded to use a novel two-viral vector method to specifically label ipsilateral C3-C4 PNs with tetracycline-inducible GFP. Histological analysis showed detailed labeling of somas, dendrites along with axon terminals. Based on this data, we proceeded to determine the contribution of C3-C4 PNs and rubrospinal neurons on forelimb reaching and grasping before and after cervical SCI. In our second study, we have examined a double-infection technique for shutdown of PNs and rubrospinal neurons (RSNs) in adult rats. Adult rats were microinjected with a lentiviral vector expressing tetracycline-inducible inhibitory DREADDs into C6-T1 spinal levels. Adeno-associated viral vectors (AAV2) expressing TetON mixed with GIRK2 were injected into the red nucleus and C3-C4 spinal levels respectively. Rats were tested for deficits in reaching behaviors upon application of doxycycline and clozapine-n-oxide (CNO) administration. No behavioral deficits were observed pre-injury. Rats then received a C5 spinal cord lesion to sever cortical input to forelimb motoneurons and were allowed four weeks to spontaneously recover. Upon re-administration of CNO to activate inhibitory DREADDs, deficits were observed in forelimb reaching. Histological analysis of the C3-C4 spinal cord and red nucleus showed DREADD+ neurons co-expressing GIRK2 in somas and dendrites of PNs and RSNs. PN terminals expressing DREADD were observed near C6-T1 motoneurons and in the brainstem. Control animals did not show substantial deficits with CNO administration. These results indicate both rubro- and propriospinal pathways are necessary for recovery of forelimb reaching. In a separate study, we sought to determine if promoting severed CST sprouting rostral to a C5 lesion near C3-C4 PNs could improve behavioral recovery post SCI. Past studies have examined sprouting and regeneration of corticospinal tract (CST) fibers post-cervical SCI through viral upregulation of key components of the PI3K/Akt/mTOR cascade. We examined the regenerative growth potential of CST fibers that are transduced with AAV2 expressing constituively active Akt3 or STAT3 both separately and in combination (Akt3 + STAT3). We have observed significant increases in CST axonal sprouting and regeneration in Akt3 and Akt3 + STAT3 transduced samples. However, no recovery was observed as animals transduced with viral constitutively active Akt3 displayed an epileptic phenotype. Further, epileptic animals with constitutively active Akt3 were found to have significant cortical neuron cell hypertrophy, activatived astrogliosis, increased dendritic arbors and hemimegencephalitis (HME). These results indicate a new model for examining mechanisms of HME and mTOR hyperactivity-induced epilepsy in adult rodents.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.