• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Engineering Nanoparticles for Targeted Delivery of Growth Factors to Prevent Cardiac Remodeling After an MI

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Rosano_temple_0225M_10383.pdf
    Size:
    5.661Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2010
    Author
    Rosano, Jenna Marie
    Advisor
    Kiani, Mohammad F.
    Committee member
    Crabbe, Deborah
    Krynska, Barbara
    Department
    Mechanical Engineering
    Subject
    Engineering, Biomedical
    Nanotechnology
    Liposomes
    Myocardial Infarction
    Targeted Drug Delivery
    Therapeutic Angiogenesis
    Vascular Endothelial Growth Factor
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2262
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2244
    Abstract
    Myocardial infarction (MI) is a leading cause of death in the United States, claiming the lives of approximately 500,000 people each year. The infarcted heart undergoes a compensatory process called cardiac remodeling, which adversely changes left ventricular (LV) size and function and eventually may lead to heart failure. To date, the only clinical treatments for this condition include surgical restoration of blood flow to the ischemic region (e.g., angioplasty), or pharmacological treatments (e.g., angiotensin converting enzyme inhibitors) which indirectly manage the symptoms of cardiac remodeling. Reperfusion of ischemic heart tissue significantly limits myocardial damage after an MI; however, many MI patients are not candidates for traditional reperfusion surgery. Recently, there has been much interest in non-surgical myocardial reperfusion via pro-angiogenic compounds, specifically vascular endothelial growth factor (VEGF). Although animal studies using therapeutic VEGF have shown promising results, these results have failed to translate into successful clinical trials. This may be due to the short half-life of VEGF in circulation. Increasing the dose of VEGF may increase its availability to the target tissue, but harmful side-effects remain a concert. Encapsulating VEGF and selectively targeting it to the MI border zone may improve vascularization, cardiac function, reduce adverse remodeling associated with MI, and may avoid harmful side effects associated with systemic delivery. Anti-P-selectin conjugated immunoliposomes containing VEGF were developed to target the P-selectin ligand overexpressed in the infarct border zone in a rat MI model. Serial echocardiography and Doppler imaging were used to characterize evolutionary changes in LV geometry and function over a period of four weeks after MI. At four weeks, hearts were excised and stained to measure vascularization and collagen deposition. Targeted VEGF treatment resulted in significant improvements in fractional shortening at four weeks post-infarction (32.9 ± 2.2% for targeted VEGF treated vs. 16.9 ± 1.4% for untreated MI). Functional improvements in treated MI hearts were accompanied by a 74% increase in perfused vessels in the MI border zone, compared to untreated MI hearts. Left ventricular filling dynamics were significantly improved in the targeted VEGF treated group, which resulted in a decrease in LV end diastolic pressure in VEGF treated hearts (23.4 ± 2.9 mm Hg), compared to untreated MIs (81.8 ± 31.8 mm Hg). At four weeks after infarction, hearts treated with targeted VEGF therapy exhibited a 37% reduction in collagen deposition, compared to untreated MI hearts. Targeted VEGF therapy significantly improves vascularization, cardiac function, and moderates adverse cardiac remodeling after an infarction.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.