• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The CCAAT-box binding transcription factor, nuclear factor-Y (NF-Y) regulates transcription of human aldo-keto reductase 1C1 (AKR1C1) gene

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Pallai_temple_0225E_10362.pdf
    Size:
    2.138Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2010
    Author
    Pallai, Rajash
    Advisor
    Parekh, Hemant K.
    Committee member
    Ashby, Barrie
    Safadi, Fayez F.
    Potula, Raghava
    Ayene, Iraimoudi S.
    Department
    Pathology
    Subject
    Biology, Molecular
    Dihydrodiol Dehydrogenase
    Hydroxysteroid Dehydrogenase
    Liver Hepatoblastoma
    Lung Adenocarcinoma
    Ovarian Carcinoma
    Promoter Regulation
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2084
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2066
    Abstract
    Dihydrodiol dehydrogenases are a family of aldo-keto reductases (AKR1Cs) involved in the metabolism of steroid hormones and xenobiotics. Whilst, several phase II drugs as well as endogenous & exogenous steroids/steroid metabolites have been identified as inducers of gene transcription, the cellular transcription factors controlling the expression of AKR1C1 are incompletely elucidated. Herein, we have cloned and characterized the proximal promoter region of the human AKR1C1 gene that controls its transcription. The 5’ flanking proximal promoter region of the AKR1C1 gene consists of a TATA box and an inverted CCAAT binding site. Deletion analysis of the 5’-flanking, ~3.0 kb region of the human AKR1C1 gene identified the region between -128 to -88 as the minimal proximal promoter essential for basal transcription of AKR1C1 in human ovarian (2008 & 2008/C13*), lung (H23 & A549) and liver carcinoma (HepG2) cells. Antioxidant response elements (ARE) have been shown to modulate the transcription ofv genes coding for phase II drug metabolizing enzymes. Cloning of the ARE upstream of the AKR1C1 proximal promoter resulted in increased transcription in human lung adenocarcinoma and liver hepatoblastoma cells but not in human ovarian carcinoma cells. Further, ARE increased the induction of the AKR1C1 gene in response to treatment with phase II drug inducers. However, ARE did not induce the transcription of AKR1C1 gene promoter in the presence of cisplatin in any of the cell lines. A computational analysis utilizing the Alibaba 2.0 on the proximal AKR1C1 gene promoter region was performed to identify potential transcription factor binding sites. Based on this analysis, a set of potential, putative transcription factor binding sites for Oct1, Sp1, Cp-1/NF-Y, CEBP, p40X, USF, NF1 and AP-2 were identified in the region -180 to -88 of the AKR1C1 gene promoter. Site-directed mutagenesis studies indicated that the transcription factor binding sites for NF-Y/CEBP were involved in controlling the basal transcription of AKR1C1 in all the cancer cells studied. Electrophoretic mobility shift (EMSAs) and gel supershift assays demonstrated that the transcription factor NF-Y preferentially binds to the inverted CCAAT box at -109ATTGG-105 of the AKR1C1 gene. Chromatin immunoprecipitation (ChIP) analysis confirmed the in vivo association between NF-Y and human AKR1C1 gene promoter in human ovarian, lung and liver carcinoma cells. Further, ectopic expression of NF-Y’s increased the AKR1C1 gene transcription, whereas expression of a dominant-negative NF-YA or knockdown of NF-YA by siRNA transfection, decreased the AKR1C1 gene transcription. A 2-fold increase in AKR1C1 transcription was observed specifically in cisplatin-treated 2008 cells that was CCAAT box-dependent. These results indicate that NF-Y regulates basal transcription of AKR1C1 in human ovarian, lung and liver carcinoma cells and cisplatin-induced transcription in human ovarian carcinoma cells.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.