• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Non-Equilibrium Dynamics of Second Order Traffic Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    p245801coll10_631980.pdf
    Size:
    5.106Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2020
    Author
    Ramadan, Rabie
    Advisor
    Seibold, Benjamin
    Committee member
    Queisser, Gillian
    Klapper, Isaac
    Rosales, Rodolfo R.
    Department
    Mathematics
    Subject
    Mathematics
    Transportation
    Applied Mathematics
    Averaging
    Fuel Consumption
    Jamiton
    Stability
    Sub-characteristic Condition
    Traffic Modeling
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2078
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2060
    Abstract
    Even though first order LWR models have many limitations, they are still widely used in many engineering applications. Second-order models, on the other hand, address many of those limitations. Among second-order models, the inhomogeneous Aw-Rascle-Zhang (ARZ) model is well-received as its structure generates characteristic waves that make physical sense. The ARZ model --- and other $2\times 2$ hyperbolic systems with a relaxation term --- possess a critical phase transition: whenever the sub-characteristic condition (SCC) is violated, uniform traffic flow is unstable, and small perturbations grow into nonlinear traveling waves, called jamitons. The case where the SCC is satisfied has been studied extensively. However, what is essentially unstudied is the question: which jamiton solutions are dynamically stable? To understand which stop-and-go traffic waves can arise through the dynamics of the model, this question is critical. This dissertation first outlines the mathematical foundations of the ARZ model and its solutions, then presents a computational study demonstrating which types of jamitons are dynamically stable, and which are not. After that, a procedure is presented that characterizes the stability of jamitons. The study reveals that a critical component of this analysis is the proper treatment of the perturbations to the shocks, and of the neighborhood of the sonic points. The insight gained from answering the question regarding the dynamical stability of jamitons has many applications. One particular application presented here is deriving an averaged model for the ARZ model. Such a model is as simple to solve (analytically and numerically) as the LWR model, but nevertheless captures the cumulative effects of jamitons regarding fuel consumption, total flow, and braking events.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.