• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Novel Application of Nondestructive Testing to Evaluate Anomalous Conditions in Drilled Shafts and the Geologic Materials Underlying Their Excavations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    p245801coll10_609582.pdf
    Size:
    32.87Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Kordjazi, Alireza
    Advisor
    Coe, Joseph T.
    Committee member
    Faheem, Ahmed
    Abboud, Bechara E.
    Filshill, Archibald
    Ren, Fei
    Department
    Civil Engineering
    Subject
    Civil Engineering
    Geophysical Engineering
    Drilled Shafts
    Forward Simulation
    Full Waveform Inversion
    Ndt
    Non-destructive Testing
    Sequential Optimal Experimental Design (soed)
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2066
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2048
    Abstract
    Drilled shafts are deep foundation elements created by excavating cylindrical shafts into the ground and filling them with concrete. Given the types of structures they support, failure to meet their performance criteria can jeopardize public safety and cause severe financial losses. Consequently, quality control measures are warranted to ensure these foundations meet design specifications, particularly with respect to their structural integrity and geotechnical capacity. Due to their inaccessibility, non-destructive testing (NDT) techniques have received much attention for drilled shaft quality control. However, there are limitations in the NDT tools currently used for structural integrity testing. Moreover, there is no current NDT tool to evaluate conditions underlying drilled shaft excavations and aid in verifying geotechnical capacity. The main objective of this research is to examine the development of new NDT methodologies to address some of the limitations in the inspection of drilled shaft structural integrity and geotechnical conditions underlying their excavations. The use of stress waves in large laboratory models is first examined to evaluate the performance of ray-based techniques for detecting anomalies. The study then continues to investigate the improvements offered by using a full waveform inversion (FWI) approach to analyze the stress wave data. A hybrid, multi-scale FWI workflow is recommended to increase the chance of the convergence of the inversion algorithms. Additionally, the benefits of a multi-parameter FWI are discussed. Since FWI is computationally expensive, a sequential optimal experimental design (SOED) analysis is proposed to determine the optimal hardware configurations for each application. The resulting benefit-cost curves from this analysis allow for designing an NDT survey that matches the available resources for the project.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.