• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MODELING OF THERMO-MECHANICAL BEHAVIOR OF NITINOL ACTUATOR FOR SMART NEEDLE APPLICATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Nguyen_temple_0225M_11166.pdf
    Size:
    6.456Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2012
    Author
    Nguyen, Tuan Minh
    Advisor
    Hutapea, Parsaoran
    Committee member
    Darvish, Kurosh
    Pillapakkam, Shriram
    Department
    Mechanical Engineering
    Subject
    Engineering, Mechanical
    Mechanics
    Materials Science
    Actuator
    Nitinol
    Numerical Modeling
    Smart Needle
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2013
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1995
    Abstract
    A large and increasing number of cancer interventions, including both diagnosis and therapy, involve precise placement of needles, which is extremely difficult. This challenge is due to lack of proper actuation of the needle (i.e., actuated from the proximal end, which is far away from the needle tip). To overcome this challenge, we propose to bend the needle using a smart actuator that applies bending forces on the needle body; thereby, improving the navigation of the needle. The smart actuator is designed with shape memory alloy (SMA) wires, namely Nitinol, due to their unique properties such as super-elasticity, shape memory effect, and biocompatibility. For accurate steering of the smart needle, there is a need to understand Nitinol thermo-mechanical behaviors. Various existing SMA constitutive models were investigated and compared. Since SMA is used as an actuator in this project, only one dimensional constitutive models are considered. Two distinct models with different phase transformation kinetic approaches were chosen. The first model was proposed by Terriault and Brailovski (J. Intell. Mat. Systems Structures, 2011) using a modified one dimensional Likhachev formulation. The second model was developed by Brinson (J. Intell. Mat. Systems Structures , 1993). Since all SMA constitutive models are empirically based, several important materials' constants such as Phase Transformation Temperatures are needed. The four Transformation Temperatures are: Martensite start (Ms), Martensite finish (Mf), Austenite start (As), Austenite finish (Af). Differential Scanning Calorimetry (DSC) was used to obtain these constants. These temperatures are also influenced by stress, defined by the Clausius-Clayperon coefficients. The coefficients were obtained by measuring Nitinol temperature and displacement response under various constant stress conditions. In order to study its actuation behavior, Nitinol wires under constant strain configuration and resistance heating were tested for their force response. The thermo-mechanical responses were then compared with numerical simulations. While Terriault and Brailovski resistance heating formulation agrees strongly with temperature responses, the model cannot be used to simulate the actuator mechanical responses. Brinson model simulations of the force responses were found to agree well with experimental results. In conclusion, Terriault and Brailovski resistance heating formulation should be coupled with Brinson model to accurately simulate Nitinol actuation behavior for the smart needle.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.