• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Multiple Testing Procedures for One- and Two-Way Classified Hypotheses

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Nandi_temple_0225E_13824.pdf
    Size:
    983.4Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Nandi, Shinjini
    Advisor
    Sarkar, S. K. (Sanat K.)
    Committee member
    Airoldi, Edoardo
    Zhao, Zhigen
    Su, Weijie
    Department
    Statistics
    Subject
    Statistics
    Data-adaptive One-way Grouped Bh
    Data-adaptive Two-way Grouped Bh
    Lfdr Based Two-way Gate
    Multiple Testing
    One-way Grouped Bh
    Two-way Grouped Bh
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1995
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1977
    Abstract
    Multiple testing literature contains ample research on controlling false discoveries for hypotheses classified according to one criterion, which we refer to as `one-way classified hypotheses'. However, one often encounters the scenario of `two-way classified hypotheses' where hypotheses can be partitioned into two sets of groups via two different criteria. Associated multiple testing procedures that incorporate such structural information are potentially more effective than their one-way classified or non-classified counterparts. To the best of our knowledge, very little research has been pursued in this direction. This dissertation proposes two types of multiple testing procedures for two-way classified hypotheses. In the first part, we propose a general methodology for controlling the false discovery rate (FDR) using the Benjamini-Hochberg (BH) procedure based on weighted p-values. The weights can be appropriately chosen to reflect one- or two-way classified structure of hypotheses, producing novel multiple testing procedures for two-way classified hypotheses. Newer results for one-way classified hypotheses have been obtained in this process. Our proposed procedures control the false discovery rate (FDR) non-asymptotically in their oracle forms under positive regression dependence on subset of null p-values (PRDS) and in their data-adaptive forms for independent p-values. Simulation studies demonstrate that our proposed procedures can be considerably more powerful than some contemporary methods in many instances and that our data-adaptive procedures can non-asymptotically control the FDR under certain dependent scenarios. The proposed two-way adaptive procedure is applied to a data set from microbial abundance study, for which it makes more discoveries than an existing method. In the second part, we propose a Local false discovery rate (Lfdr) based multiple testing procedure for two-way classified hypotheses. The procedure has been developed in its oracle form under a model based framework that isolates the effects due to two-way grouping from the significance of an individual hypothesis. Simulation studies show that our proposed procedure successfully controls the average proportion of false discoveries, and is more powerful than existing methods.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.