• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Reactivity of Iron-Bearing Minerals Under Carbon Sequestration Conditions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Murphy_temple_0225E_10751.pdf
    Size:
    20.91Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2011
    Author
    Murphy, Riley Tomas
    Advisor
    Strongin, Daniel R.
    Committee member
    Stanley, Robert J.
    Wunder, Stephanie L.
    Schoonen, Martin A. A., 1960-
    Department
    Chemistry
    Subject
    Chemistry
    Geochemistry
    Hematite
    Sequestration
    Sulfide
    Supercritical
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1976
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1958
    Abstract
    The rise in anthropogenic carbon dioxide in the atmosphere has caused the pursuit of adequate methods to alleviate the resulting strain on the world's ecosystem. A promising strategy is the geological sequestration of carbon dioxide, in which carbon dioxide emitted from large point sources is injected underground for storage. Under storage, carbon dioxide trapped as a carbonate mineral may be stable for geological time periods. Experiments were conducted to test the potential of ferric-bearing minerals to sequester carbon as a ferrous carbonate mineral (siderite). The formation of siderite requires the reduction of ferric ions which may be achieved by the co-injection of H2S or SO2 contaminants with CO2. Both ferrihydrite and hematite nanoparticles were exposed to an aqueous Na2S solution in the presence of supercritical CO2 (scCO2) and were analyzed in situ by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). In situ ATR-FTIR indicated that the formation of siderite occurred on the order of minutes for ferrihydrite and hematite nanoparticles. Particles were analyzed post-reaction with X-ray diffraction (XRD) and electron microscopy. XRD results indicated that ferrihydrite reacted completely to form siderite and elemental sulfur after 24 h at 100 °C, while hematite only partially reacted to form siderite and pyrite after 24 h at 70 °C. Additionally, hematite nanoparticles were exposed to H2S and scCO2 in a series of batch reactions, and the reaction products were determined by XRD as a function of CO2 and H2S partial pressures, alkalinity, salinity, time, and temperature.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.