• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    In Vivo Expression of the Bacterial Amyloid Curli

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Medeiros_temple_0225M_12548.pdf
    Size:
    1.629Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    Medeiros, Nicole Jennifer
    Advisor
    Tukel, Cagla
    Committee member
    Buttaro, Bettina A.
    Tsygankov, Alexander Y.
    Monestier, Marc
    Department
    Biomedical Sciences
    Subject
    Microbiology
    Immunology
    Antibody
    Autoantibody
    Csga
    Curli
    Expression
    Salmonella
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1897
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1879
    Abstract
    Salmonella enterica serotype Typhimurium is a rod-shaped, motile, Gram-negative bacterium that causes gastroenteritis in immunocompetent individuals. S. Typhimurium produces an extracellular protein termed curli, a bacterial amyloid with a cross beta-sheet tertiary structure that is common across all amyloids. Curli formation is critical for biofilm formation by enteric pathogens such as S. Typhimurium and E. coli. Curli expression requires the production of multiple proteins, which are encoded by two operons known as csgBAC and csgDEFG. Curli production can be induced in vitro by low temperature and low osmolarity, which is evident by growth on T-medium plates for 72 hours at 28oC. Earlier studies have shown that curli is expressed in sepsis patients with E. coli, as well as in mice after S. Typhimurium infection. This is evidenced by the production of antibodies to CsgA, the major subunit of curli. Our lab has shown that curli fibers are recognized by the TLR2/TLR1 complex of the innate immune system during infection. Infection with curli expressing bacteria causes elevated levels of proinflammatory cytokines, nitric oxide, and autoantibodies. Nonetheless, the details of curli expression in vivo during bacterial infection remain unknown. The focus of these studies was to elucidate the location where bacteria expresses curli in vivo during infection. Initially, we used S. Typhimurium strains carrying plasmids with csgB and csgD promoter regions fused to the gfp gene to study curli expression in vivo by use of flow cytometry. Unfortunately, we were unable to determine curli expression with this model, due to the diminished fluorescence intensity of GFP under anaerobic conditions in the gastrointestinal tract. As the question of curli expression in vivo was left unanswered, we next used a long-term infection model of S. Typhimurium with the goal of determining seroconversion to curli as well as the location and timing of curli expression. Using CBA/J mice infected with wild-type S. Typhimurium or a curli mutant strain, we were able to identify seroconversion to CsgA in the mice infected with the wild-type strain through ELISA and western blot analysis. We were also able to identify autoantibody production in mice infected with the wild-type strain through ELISA. However, we were unable to determine curli expression in the feces of mice either by western blot or qPCR data. We were also able to identify autoantibody production in mice infected with the wild-type strain through an anti-double stranded DNA ELISA. Preliminary findings lead us to hypothesize that curli expression may occur very early on in infection, and may be expressed inside cells such as macrophages. Overall, our results partially elucidate curli expression in vivo, although more research is needed in order to answer our remaining questions regarding location and timing of expression.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.