• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Measurement and Visualization of Electron Transfer at the Single Molecule Level

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Xing_temple_0225E_10173.pdf
    Size:
    3.861Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2009
    Author
    Xing, Yangjun
    Advisor
    Borguet, Eric
    Committee member
    Strongin, Daniel R.
    Wunder, Stephanie L.
    Burkhardt, T. W. (Theodore W.), 1940-
    Department
    Chemistry
    Subject
    Chemistry, Physical
    Chemistry, Analytical
    Chemistry, General
    Break-junction
    Molecular Electronics
    Ope
    Pna
    Porphyrin
    Stm
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1896
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1878
    Abstract
    Molecular electronics based on bottom-up electronic circuit design is a potential solution to meet the continuous need to miniaturize electronic devices. The development of highly conductive molecular wires, especially for long distance charge transfer, is a major milestone in the molecular electronics roadmap. A challenge presented by single molecule conductance is to define the relative influence of the molecular "core" and the molecular "interconnects" on the observed currents. Much focus has been placed on designing conductive, conjugated molecules. However, the electrode-molecule contacts can dominate the responses of metal-molecule-metal devices. We have experimentally and theoretically probed charge transfer through single phenyleneethynylene molecules terminated with thiol and carbodithioate linkers, using STM break-junction and non-equilibrium Green's function methods. The STM break-junction method utilizes repeatedly formed circuits where one or a few molecules are trapped between two electrodes, at least one of which has nanoscale dimensions. The statistical analysis of thousands of measurements yields the conductance of single molecules. Experimental data demonstrate that the carbodithioate linker not only augments electronic coupling to the metal electrode relative to thiol, but reduces the barrier to charge injection into the phenyleneethynylene bridge. The theoretical analysis shows that sulfur hybridization provides the genesis for the order-of-magnitude increased conductance in carbodithioate-terminated systems relative to those that feature the thiol linker. Collectively, these data emphasize the promising role for carbodithioate-based connectivity in molecular electronics applications involving metallic and semi-conducting electrodes. One of the strategies for building molecular wires that can transfer charge over long distance is to incorporate metal ions into the conductive molecular core. Peptide nucleic acid (PNA) is a great candidate for this purpose. Studying the conductivity of PNA can not only contribute to a better understanding of charge transfer through biomolecules, but can also help develop better molecular wires and other building blocks of molecular electronics. We study the charge transfer of PNA molecules using the STM break-junction technique and compare with traditional macroscopic voltammetric measurements. By measuring the resistance of different PNA molecules, we hope to develop a deep understanding of how charge transport though PNA is affected by factors such as the number and type of natural and artificial bases, embedded metal ions, pH, etc. Self-assembled monolayers (SAMs) of porphyrins are of great interest due to their diverse applications, including molecular devices, nano-templates, electrocatalysis, solar cells, and photosynthesis. We combined a molecular level study of the redox reactions using electrochemical scanning tunneling microscopy (EC-STM) with a macroscopic electrochemical technique, cyclic voltammetry (CV), to study two redox active porphyrin molecules, TPyP (5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine) and 5, 10, 15, 20-tetrakis (4-carboxylphenyl)-21H, 23H-porphine (TCPP). We showed that the adsorbed oxidized TPyP molecules slowly change to brighter contrast, consistent with the appearance of the reduced form of TPyP, under reduction condition (0.0VSCE). The time scale of the slow reduction is in the order of tens of minutes at 0.0VSCE, but accelerates at more negative potentials. We propose that protonation and deprotonation processes play an important role in the surface redox reaction due to geometric restriction of the molecules adsorbed on the surface. EC-STM and CV experiments were performed at various pH values to investigate the mechanism of this anomalously slow redox reaction. Our results show that the increased concentration of H+ hinders the reduction of porphyrins, a feature that has not been reported preciously. This provides insight into the details of the surface redox reaction.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.