• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Graph-based Inference with Constraints for Object Detection and Segmentation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ma_temple_0225E_11561.pdf
    Size:
    11.12Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2013
    Author
    Ma, Tianyang
    Advisor
    Latecki, Longin
    Committee member
    Ling, Haibin
    Vucetic, Slobodan
    Huang, Xiaolei
    Department
    Computer and Information Science
    Subject
    Computer Science
    Graph-based
    Inference
    Object Detection
    Object Segmentation
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1797
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1779
    Abstract
    For many fundamental problems of computer vision, adopting a graph-based framework can be straight-forward and very effective. In this thesis, I propose several graph-based inference methods tailored for different computer vision applications. It starts from studying contour-based object detection methods. In particular, We propose a novel framework for contour based object detection, by replacing the hough-voting framework with finding dense subgraph inference. Compared to previous work, we propose a novel shape matching scheme suitable for partial matching of edge fragments. The shape descriptor has the same geometric units as shape context but our shape representation is not histogram based. The key contribution is that we formulate the grouping of partial matching hypotheses to object detection hypotheses is expressed as maximum clique inference on a weighted graph. Consequently, each detection result not only identifies the location of the target object in the image, but also provides a precise location of its contours, since we transform a complete model contour to the image. We achieve very competitive results on ETHZ dataset, obtained in a pure shape-based framework, demonstrate that our method achieves not only accurate object detection but also precise contour localization on cluttered background. Similar to the task of grouping of partial matches in the contour-based method, in many computer vision problems, we would like to discover certain pattern among a large amount of data. For instance, in the application of unsupervised video object segmentation, where we need automatically identify the primary object and segment the object out in every frame. We propose a novel formulation of selecting object region candidates simultaneously in all frames as finding a maximum weight clique in a weighted region graph. The selected regions are expected to have high objectness score (unary potential) as well as share similar appearance (binary potential). Since both unary and binary potentials are unreliable, we introduce two types of mutex (mutual exclusion) constraints on regions in the same clique: intra-frame and inter-frame constraints. Both types of constraints are expressed in a single quadratic form. An efficient algorithm is applied to compute the maximal weight cliques that satisfy the constraints. We apply our method to challenging benchmark videos and obtain very competitive results that outperform state-of-the-art methods. We also show that the same maximum weight subgraph with mutex constraints formulation can be used to solve various computer vision problems, such as points matching, solving image jigsaw puzzle, and detecting object using 3D contours.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.