Show simple item record

dc.contributor.advisorZdilla, Michael J., 1978-
dc.creatorLundell, Carl
dc.date.accessioned2020-10-27T15:14:17Z
dc.date.available2020-10-27T15:14:17Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.12613/1786
dc.description.abstractDuring World War II, it was discovered that when lead was added to double-base propellants, it produced beneficial burn rate phenomena. Specifically, the propellant burn rate first increased unexpectedly at low pressures, then the burn rate became independent of pressure, followed lastly by “mesa burning” where the burn rate actually decreased with increasing pressure. This results in a beneficial negative feedback mechanism. Over the past 75 years, researchers have explored different lead complexes to achieve better propellant performance. However, over the last decade, research has shifted to finding an alternative to using lead as an additive to reduce toxicity. Until the attempts detailed herein, researchers had not, to our knowledge attempted to combine double-base propellant stabilizers with various metals to achieve these desired results. In doing so, we prepared two lead complexes, Tetrakis (µ3-(4-methyl-3-nitrophenyl imido lead (II))) 1, and Bis(dinitrophenyl imido lead(II)) 2, that were synthesized by reacting lead bis(trimethylsilyl)amide with a common double-base propellant stabilizer 2-nitrodiphenylamine (NDPA) and 4-methyl-3-nitroaniline. Both complexes formed from protolysis of the trimethylsilylamide ligand by the acidic proton of the amine, and crystallized from tetrahydrofuran (THF). Bomb calorimetry coupled with crystal density structure determined that 1 has a very high energy density of 74.1 MJ/L, more than three times the energy density of conventional nitroamine explosives, whereas 2 was lower at 38.2 MJ/L. The structure, charge and characterization of 1 and 2 are discussed. However, each complex is air sensitive making burn rate experimentation infeasible, so any possible changes to the propellant as an additive remained undetermined. Attempts to use of tin, zinc, or bismuth bis(trimethyl)amides in place of lead, were unsuccessfully characterized, although reactions were likely observed.
dc.format.extent82 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectChemistry
dc.subjectInorganic Chemistry
dc.subjectBurn Rate Modifier
dc.subjectDouble-base Propellant
dc.subjectLead Tetrakis
dc.subjectMesa Burning
dc.titleRESEARCH STUDY: REACTING METAL BIS(TRIMETHYL)AMIDES WITH DOUBLE-BASE PROPELLANT STABILIZERS
dc.typeText
dc.type.genreThesis/Dissertation
dc.description.departmentChemistry
dc.relation.doihttp://dx.doi.org/10.34944/dspace/1768
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreeM.A.
refterms.dateFOA2020-10-27T15:14:17Z


Files in this item

Thumbnail
Name:
Lundell_temple_0225M_12822.pdf
Size:
1.517Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record