• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A MULTI-AGENT BASED APPROACH FOR SOLVING THE REDUNDANCY ALLOCATION PROBLEM

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Li_2011_155634.pdf
    Size:
    910.0Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2011
    Author
    Li, Zhuo
    Advisor
    Bai, Li
    Committee member
    Picone, Joseph
    Biswas, Saroj K.
    Department
    Electrical and Computer Engineering
    Subject
    Computer Science
    Algorithm
    Combinatorial Optimization
    Multi-agent System
    Rap
    Redundancy Allocation Problem
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1731
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1713
    Abstract
    Redundancy Allocation Problem (RAP) is a well known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. Due to the diverse possible selection of components, the RAP is proved to be NP-hard. Therefore, many algorithms, especially heuristic algorithms were proposed and implemented in the past several decades, committed to provide innovative methods or better solutions. In recent years, multi-agent system (MAS) is proposed for modeling complex systems and solving large scale problems. It is a relatively new programming concept with the ability of self-organizing, self-adaptive, autonomous administrating, etc. These features of MAS inspire us to look at the RAP from another point of view. An RAP can be divided into multiple smaller problems that are solved by multiple agents. The agents can collaboratively solve optimal RAP solutions quickly and efficiently. In this research, we proposed to solve RAP using MAS. This novel approach, to the best of our knowledge, has not been proposed before, although multi-agent approaches have been widely used for solving other large and complex nonlinear problems. To demonstrate that, we analyzed and evaluated four benchmark RAP problems in the literature. From the results, the MAS approach is shown as an effective and extendable method for solving the RAP problems.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.