• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ATOMIC CONSTRUCTION OF OXIDE THIN FILMS BY LASER MOLECULAR BEAM EPITAXY

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Lei_temple_0225E_12467.pdf
    Size:
    4.169Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    Lei, Qingyu
    Advisor
    Xi, Xiaoxing
    Committee member
    Iavarone, Maria
    Wu, Xifan
    Davidson, Bruce A.
    Strongin, Daniel R.
    Department
    Physics
    Subject
    Physics
    Materials Science
    Lao/sto
    Laser Molecular Beam Epitaxy
    Oxides
    Pulsed Laser Deposition
    Rheed
    Thin Films
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1718
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1700
    Abstract
    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Reactive molecular-beam epitaxy (MBE) and pulsed-laser deposition (PLD) are the two most successful growth techniques for epitaxial heterostructures of complex oxides. PLD possesses experimental simplicity, low cost, and versatility in the materials to be deposited. Reactive MBE employing alternately-shuttered elemental sources (atomic layer-by-layer MBE, or ALL-MBE) can control the cation stoichiometry precisely, thus producing oxide thin films of exceptional quality. There are, however, major drawbacks to the two techniques. Reactive MBE is limited to source elements whose vapor pressure is sufficiently high; this eliminates a large fraction of 4- and 5-d metals. In addition, the need for ozone to maintain low-pressure MBE conditions increases system complexity in comparison to conventional PLD. On the other hand, conventional PLD using a compound target often results in cation off-stoichiometry in the films. This thesis presents an approach that combines the strengths of reactive MBE and PLD: atomic layer-by-layer laser MBE (ALL-Laser MBE) using separate oxide targets. Ablating alternately the targets of constituent oxides, for example SrO and TiO2, a SrTiO3 film can be grown one atomic layer at a time. Stoichiometry for both the cations and oxygen in the oxide films can be controlled. Using Sr1+xTi1-xO3, CaMnO3, BaTiO3 and Ruddlesden–Popper phase Lan+1NinO3n+1 (n = 4) as examples, the technique is demonstrated to be effective in producing oxide films with stoichiometric and crystalline perfection. By growing LaAl1+yO3 films of different stoichiometry on TiO2-terminated SrTiO3 substrate at high oxygen pressure, it is shown that the behavior of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface can be quantitatively explained by the polar catastrophe mechanism.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.