• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Compressive Mechanics Of A Poly (Vinyl Alcohol)-Based Hydrogel System For The Replacement Of The Knee Meniscus

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kouecheu_temple_0225M_11549.pdf
    Size:
    569.5Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2013
    Author
    Kouecheu, Line Francine Nana
    Advisor
    Lowman, Anthony M., 1970-
    Committee member
    Fisher, Omar Z.
    Darvish, Kurosh
    Hutapea, Parsaoran
    Department
    Mechanical Engineering
    Subject
    Engineering, Mechanical
    Engineering, Biomedical
    Compression
    Hydrogel
    Knee
    Meniscus
    Poly(vinyl Alcohol)
    Prosthesis
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1660
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1642
    Abstract
    Osteoarthritis and cartilage deterioration are favored by meniscetomy, which is the ablation of the meniscus from the knee joint. Meniscectomy can be partial or total. This procedure is performed when meniscus lesions and tears or the degeneration of the meniscus caused by its natural dehydration occur. There is a peak of meniscal lesions observed between 20 and 29 years old. Alternative methods such as sutures fail in that they present a short term solution which is ideal for a less active, older generation. A long term solution is needed for a younger population to reduce the number of surgical procedures over the lifetime of this active group. There is a crucial need for a functional implant designed in the image of the native meniscus. Blends of poly (vinyl alcohol) PVA and poly (vinyl pyrrolidone) (PVP) present a potential solution. PVA has shown similar characteristics to soft tissues. PVP further stabilizes the hydrogel network. This work is the mechanical characterization of PVA/PVP (99:1) hydrogels under physiological conditions. Equilibrium swelling in a medium replicating the ionic and the osmotic content of the synovial fluid was investigated during 35 days. The mass retention of hydrogels was characterized using data obtained from the swelling study and was examined as a function of the cross link density and the polymer content. The modulus of hydrogels was obtained in unconfined compression, first at a strain rate slow enough to ignore fluid flow in and out of the gels, and subsequently at a physiological strain rate of walking. Results indicate that PVA/PVP hydrogels volume swelling ratio and weight swelling ratio show no significant difference for most formulations by the 14th day of immersion. A few hydrogels would reach equilibrium by day 21. Additionally, percentage polymer mass retention increases with the cross link density. However, there is no consistent trend with the polymer content. All formulations with 10% wt of polymer show the highest mass retention while 15% wt show the lowest. Interestingly, the mechanical characterization of hydrogels at 100%/min strain rate shows that 15% wt is the only formulation whose compressive modulus falls within the targeted range whereas 10% wt proves to not be stiff enough. 20% wt and 25% wt are always too stiff. Results obtained from unconfined compression at the physiological strain rate, that is 1920%/min, are rather inconclusive. There is not enough consistency in the literature to narrow the results down to one successful candidate formulation. The modulus range obtained at physiological strain rate encompasses the range obtained at 100%/min strain rate. The highest modulus value obtained is 10 times higher at physiological strain rate than the modulus of a real human meniscus obtained at 100%/min strain rate. It is not reasonable at this time to make a choice of a formulation at physiological strain rate due to high variability of the modulus of a human meniscus as a result of its intrinsic anisotropy. All formulations tested would be considered successful candidates, which is irrational considering the difference in their stiffness.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.