• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AN INVESTIGATION OF GROW CUT ALGORITHM FOR SEGMENTATION OF MRI SPINAL CORD IMAGES IN NORMALS AND PATIENTS WITH SCI

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kayal_temple_0225M_11328.pdf
    Size:
    1.548Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2012
    Author
    Kayal, Nilanjan
    Advisor
    Mohamed, Feroze B.
    Committee member
    Faro, Scott H.
    Pleshko, Nancy
    Department
    Bioengineering
    Subject
    Engineering, Biomedical
    Cervical Spinal Cord
    Diffusion Tensor Imaging
    Grow Cut Algorithm (gca)
    Magnetic Resonance Imaging (mri)
    Segmentation
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1584
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1566
    Abstract
    In spinal cord injury the amount of total surviving white matter is known to be strongly related to post injury neurological functions (1). Accurate segmentation of these regions is shown to be critical in terms of developing effective treatment (1). Diffusion Tensor Imaging (DTI) has been shown to be effective in obtaining spinal cord images (2). However challenges still exist in clear separation of gray/white/cerebrospinal fluid (CSF) structures within the cord using DTI. The purpose of this study is to (1) test a semi-automatic tissue segmentation algorithm based on grow cut algorithm (GCA), to classify CSF, gray and white matter in conventional T2 weighted MRI and Diffusion Tensor Imaging (DTI) images in pediatric spinal cord injury (SCI) subjects, and (2) to compare the results of semi-automatic GCA segmentation with manually segmented spinal cord data performed on various DTI images by a board certified pediatric neuroradiologist. Results show that semi-automatic segmentation of the spinal cord using GCA was successfully implemented. Qualitatively, good separation of cord/CSF was seen in B0, CFA and FA maps (of a representative patient with SCI and a control using this GCA method. They demonstrate more homogeneous signal within the cervical spinal cord as well as greater conspicuity of the cord and surrounding CSF interface. Quantitative analysis of images segmented using GCA and manual segmentation between and within the groups showed no significant differences in CFA (p=0.1347) and FA (p=0.1442) images but B0 (p=0.0001) images showed statistically significant differences. Overall, in both the controls and subjects with SCI, quantitative and qualitative analysis showed a superior semi-automated segmentation on CFA and FA images over a B0 image the using modified GCA. Key words: Grow Cut Algorithm (GCA), Magnetic Resonance Imaging (MRI), segmentation, Diffusion Tensor Imaging (DTI), cervical spinal cord, cerebral-spinal fluid (CSF).
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.