• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    STATISTICAL CONTROL USING NEURAL NETWORK METHODS WITH HIERARCHICAL HYBRID SYSTEMS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kang_temple_0225E_10668.pdf
    Size:
    1.827Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2011
    Author
    Kang, Bei
    Advisor
    Won, Chang-Hee, 1967-
    Committee member
    Butz, Brian P.
    Vainchtein, Dmitri
    Biswas, Saroj K.
    Nersesov, Sergey G., 1976-
    Department
    Electrical and Computer Engineering
    Subject
    Engineering
    Hierarchical Hybrid System
    Optimal Control
    Statistical Control
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1570
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1552
    Abstract
    The goal of an optimal control algorithm is to improve the performance of a system. For a stochastic system, a typical optimal control method minimizes the mean (first cumulant) of the cost function. However, there are other statistical properties of the cost function, such as variance (second cumulant) and skewness (third cumulant), which will affect the system performance. In this dissertation, the work on the statistical optimal control are presented, which extends the traditional optimal control method using cost cumulants to shape the system performance. Statistical optimal control will allow more design freedom to achieve better performance. The solutions of statistical control involve solving partial differential equations known as Hamilton-Jacobi-Bellman equation. A numerical method based on neural networks is employed to find the solutions of the Hamilton-Jacobi-Bellman partial differential equation. Furthermore, a complex problem such as multiple satellite control, has both continuous and discrete dynamics. Thus, a hierarchical hybrid architecture is developed in this dissertation where the discrete event system is applied to discrete dynamics, and the statistical control is applied to continuous dynamics. Then, the application of a multiple satellite navigation system is analyzed using the hierarchical hybrid architecture. Through this dissertation, it is shown that statistical control theory is a flexible optimal control method which improves the performance; and hierarchical hybrid architecture allows control and navigation of a complex system which contains continuous and discrete dynamics.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.