• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of the Innate Immune System in Programmed Cell Death

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ingram_temple_0225E_13392.pdf
    Size:
    16.00Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2018
    Author
    Ingram, Justin Phillip
    Advisor
    Balachandran, Siddharth
    Committee member
    Brodsky, Igor
    Monestier, Marc
    Rall, Glenn F.
    Tükel, Çagla
    Zaidi, M. Raza
    Department
    Biomedical Sciences
    Subject
    Immunology
    Apoptosis
    Influenza
    Interferon
    Necroptosis
    Salmonella
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1496
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1478
    Abstract
    Infectious diseases are the leading cause of illness worldwide, leading to over 20 million hospitalizations each year in the United States alone. Although numerous diseases are treatable with vaccines and pharmacological agents, including antibiotics, a large fraction of infections remain poorly controlled, mainly due to lack of effective therapies and/or vaccines. Two such infectious agents are influenza A virus and the bacterium Salmonella enterica. Influenza A virus is transmitted through the aerosol route and infects lung epithelial cells, while Salmonella is transmitted via the fecal-oral route and infects the cells lining the intestine of the host. In each case, the first lines of defense against these infectious agents are non-phagocytic cells. How these pathogens are controlled in non-phagocytic cells dictates the overall outcome of infection; however there are significant gaps in our knowledge of how non-phagocytic cells respond to influenza A virus and Salmonella. Therefore, studying the fate of these cells during the course of infection is of crucial importance to disease outcome. In each case, the regulated (or programmed) death of the infected cell may represent an important pathogen clearance mechanism. Programmed cell death can be non-inflammatory (e.g., apoptosis) or pro-inflammatory (e.g., necroptosis and pyroptosis). In this dissertation, I outline experiments carried out to identify the pathways of programmed cell death activated by Salmonella and influenza A virus in their respective target non-phagocytic cells, both in vitro and in vivo. My work outlines new pathways of cell death activated by these pathogens and new mechanisms of both viral and bacterial clearance. This will have broad implications in the clearance of pathogens, and new therapeutic avenues to pursue upon treating infections.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.