• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Surface Science Investigations: Calcite Surface Reconstruction and Ferrihydrite Reactivity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hausner_temple_0225E_10151.pdf
    Size:
    15.16Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2009
    Author
    Hausner, Douglas B.
    Advisor
    Strongin, Daniel R.
    Committee member
    Matsika, Spiridoula
    Spano, Francis C.
    Smolen, Jean M.
    Department
    Chemistry
    Subject
    Chemistry, Physical
    Geochemistry
    Calcite
    Carbonate Adsorption
    Ferrihydrite
    Surface Reconstruction
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1405
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1387
    Abstract
    On surfaces and within interfaces occur some of the most important reactions in chemistry, from world changing industrial reactions to critical environmental processes. It is even hypothesized that the chiral nature of life arose from reactions occurring on chiral mineral surfaces. In any case adsorption typically plays a key role. Adsorption can occur on rapid time scales, particularly in catalytic systems, and it can be the precursor to highly stable surface interaction mechanisms such as surface precipitation. Surface adsorption can have a dramatic affect on the resulting surface increasing or decreasing the propensity for further reactivity or adsorption. In order to understand the processes occurring on a surface both the surface and the adsorbate must be understood. This includes a surface with any prior adsorbates. This is why many catalytic studies are done in UHV environments where clean surfaces are prepared for each experiment. The same is true with environmental surfaces, but obtaining pristine surfaces can be problematic, and systems are often extremely complicated involving organic, inorganic, and biological components. Often research is focused on just one component. A significant portion of this dissertation is focused on the adsorption of organic and inorganic species on pristine mineral surfaces. While there is significant research done on environmental surfaces, often times the surface used in studies is not well characterized. In essence lesser attention is paid to the substrate then the adsorbate. This is particularly true of infrared studies similar to the type presented in chapter 5 where carbonate is shown to exist in significant quantity on all ferrihydrite surfaces. Furthermore, chapter 4 highlights the potential for ion mobility on calcite surfaces under ambient conditions and the effect the adsorbates in chapter 3 have on the mobility process. The principal of this dissertation is to characterize fundamental surface processes which occur on calcite and ferrihydrite surfaces under ambient conditions. The hope is that this can lay the ground work for future studies where native adsorption and restructuring is taken into account on mineral surfaces during experimental studies.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.