• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Data Mining Algorithms for Decentralized Fault Detection and Diagnostic in Industrial Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Grbovic_temple_0225E_11251.pdf
    Size:
    1.607Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2012
    Author
    Grbovic, Mihajlo
    Advisor
    Vucetic, Slobodan
    Committee member
    Obradovic, Zoran
    Latecki, Longin
    Seibold, Benjamin
    Department
    Computer and Information Science
    Subject
    Computer Science
    Data Mining
    Decentralized Learning
    Fault Detection
    Fault Diagnosis
    Machine Learning
    Sparse Principal Component Analysis
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1338
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1320
    Abstract
    Timely Fault Detection and Diagnosis in complex manufacturing systems is critical to ensure safe and effective operation of plant equipment. Process fault is defined as a deviation from normal process behavior, defined within the limits of safe production. The quantifiable objectives of Fault Detection include achieving low detection delay time, low false positive rate, and high detection rate. Once a fault has been detected pinpointing the type of fault is needed for purposes of fault mitigation and returning to normal process operation. This is known as Fault Diagnosis. Data-driven Fault Detection and Diagnosis methods emerged as an attractive alternative to traditional mathematical model-based methods, especially for complex systems due to difficulty in describing the underlying process. A distinct feature of data-driven methods is that no a priori information about the process is necessary. Instead, it is assumed that historical data, containing process features measured in regular time intervals (e.g., power plant sensor measurements), are available for development of fault detection/diagnosis model through generalization of data. The goal of my research was to address the shortcomings of the existing data-driven methods and contribute to solving open problems, such as: 1) decentralized fault detection and diagnosis; 2) fault detection in the cold start setting; 3) optimizing the detection delay and dealing with noisy data annotations. 4) developing models that can adapt to concept changes in power plant dynamics. For small-scale sensor networks, it is reasonable to assume that all measurements are available at a central location (sink) where fault predictions are made. This is known as a centralized fault detection approach. For large-scale networks, decentralized approach is often used, where network is decomposed into potentially overlapping blocks and each block provides local decisions that are fused at the sink. The appealing properties of the decentralized approach include fault tolerance, scalability, and reusability. When one or more blocks go offline due to maintenance of their sensors, the predictions can still be made using the remaining blocks. In addition, when the physical facility is reconfigured, either by changing its components or sensors, it can be easier to modify part of the decentralized system impacted by the changes than to overhaul the whole centralized system. The scalability comes from reduced costs of system setup, update, communication, and decision making. Main challenges in decentralized monitoring include process decomposition and decision fusion. We proposed a decentralized model where the sensors are partitioned into small, potentially overlapping, blocks based on the Sparse Principal Component Analysis (PCA) algorithm, which preserves strong correlations among sensors, followed by training local models at each block, and fusion of decisions based on the proposed Maximum Entropy algorithm. Moreover, we introduced a novel framework for adding constraints to the Sparse PCA problem. The constraints limit the set of possible solutions by imposing additional goals to be reached trough optimization along with the existing Sparse PCA goals. The experimental results on benchmark fault detection data show that Sparse PCA can utilize prior knowledge, which is not directly available in data, in order to produce desirable network partitions, with a pre-defined limit on communication cost and/or robustness.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.