• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling Volatility in Option Pricing with Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gong_temple_0225E_10315.pdf
    Size:
    1.616Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2010
    Author
    Gong, Hui
    Advisor
    Singh, Jagbir, Dr.
    Committee member
    Thavaneswaran, Aerambamoorthy
    Elyasiani, Elyas
    Parnes, Milton
    Roehl, Wesley S.
    Department
    Statistics
    Subject
    Statistics
    Modeling Volatility
    Option Pricing
    Recursive Estimate
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1320
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1302
    Abstract
    The focus of this dissertation is modeling volatility in option pricing by the Black-Scholes formula. A major drawback of the formula is that the returns from assets are assumed to have constant volatility over time. The empirical evidence is overwhelmingly against it. In this dissertation, we allow random volatility for estimating call option prices by Black-Scholes formula and by Monte Carlo simulation. The Black-Scholes formula follows from an assumption that assets evolve according to a Geometric Brownian Motion with constant volatility. This dissertation allows time-varying random volatility in the Geometric Brownian Motion to outline a proof of the formula, thus addressing this drawback. To estimate option prices with the Black-Scholes, the dissertation considers its expectation with respect to two potential probability models of random volatility. Unfortunately, a closed form expression of the expectation of the formula for computing the option prices is intractable. Then the dissertation settles with using an approximation which to its credit incorporates in it the kurtosis of the probability model of random volatility. To our knowledge, option pricing methods in literature do not incorporate kurtosis information. The option pricing with random volatility is pursued for two stochastic volatility models. One model is a member of generalized auto regressive conditional heteroscedasticity (GARCH). The second is a member of Stochastic Volatility models. For each model, estimation of their parameters is outlined. Two real financial series data are then used to illustrate estimation of the option prices, and compared them with those from the Black-Scholes formula with constant volatility. Motivated by a Monte Carlo procedure in the literature for option pricing when the volatility follows a GARCH model, this dissertation lays a foundation for future research to simulate option prices when the random volatility is assumed to follow a Stochastic Volatility model instead of GARCH.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.