• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Spectroscopy of Polarons in Organic Semiconductors: A New Theoretical Model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ghosh_temple_0225E_13850.pdf
    Size:
    10.79Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Ghosh, Raja
    Advisor
    Spano, Francis C.
    Committee member
    Matsika, Spiridoula
    Carnevale, Vincenzo
    Voelz, Vincent
    Department
    Chemistry
    Subject
    Theoretical Physics
    Chemistry
    Computational Chemistry
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1294
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1276
    Abstract
    The spectral line-shape of the mid-IR absorption spectrum provides valuable information about the "hole" polaron coherence length in doped and undoped conjugated polymer films. In poly(3-hexylthiophene) (P3HT) films the spectrum generally consists of a narrow, low-energy peak A (700-1000 $cm^{-1}$) followed by a much broader, higher-energy peak B (2500-5000 $cm^{-1}$). Using a theory based on the Holstein Hamiltonian for mobile holes in P3HT, the IR line-shape is successfully reproduced for several recently measured spectra recorded in doped and undoped films, confirming the association of an enhanced peak ratio (A/B) with extended polaron coherence. Emphasis is placed on the origin of components polarized along the intra- and inter-chain directions and their dependence on the spatial distribution of disorder as well as the position of the dopant relative to the $\pi$-stack. The model is further adapted to treat donor-acceptor copolymers where the local HOMO energy varies periodically from donor unit to acceptor unit. The calculated line shape for a diketopyrrolopyrrole-based copolymer agrees well with the recently measured spectrum.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.