• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Ultrafast Vibrational Spectroscopy and Dynamics of Water at Interfaces

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Eftekharibafrooei_temple_0225E ...
    Size:
    1.586Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2011
    Author
    Eftekharibafrooei, Ali
    Advisor
    Borguet, Eric
    Committee member
    Levis, Robert J.
    Strongin, Daniel R.
    Lyyra, A. Marjatta
    Department
    Chemistry
    Subject
    Chemistry, Physical
    Charged Surface
    Interfacial Water
    Silica
    Sum-frequency Generation
    Surface Spectroscopy
    Vibrational Dynamics
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1156
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1138
    Abstract
    Over the past two decades, vibrational sum-frequency generation (VSFG) has been applied as a versatile technique for probing the structure and dynamics of molecules at surfaces and interfaces. The excellent surface specificity of the SFG allows for probing different kinds of liquid interfaces with no or negligible contribution from adjacent and much deeper bulk phase. VSFG spectroscopy has provided evidence that the structure of the water at interfaces is different from the bulk. With the ultrafast pulses, VSFG can also be used as a probe of ultrafast vibrational dynamics at interfaces. However, apart from a few pioneering studies, the extension of VSFG into time domain has not been explored extensively. Here VSFG is used as a probe of ultrafast vibrational dynamics of water at silica interfaces. Silica is an excellent model system for the solid phase where one can systematically vary the surface charge via bulk pH adjustment. The extension of the surface electric field, the interfacial thickness and surface accumulation of ions at a charged silica surface were studied using IR pump-VSFG probe spectroscopy. A vibrational lifetime (T1) of about 250 fs, similar to bulk H2O, was observed for the O-H stretch of H2O/silica interface when the silica surface is negatively charged. At the neutral surface, where the thickness of interfacial water is smaller than at the charged surface, the vibrational lifetime of O-H stretch becomes more than two times longer (T1~ 600 fs) due to the decreased number of neighboring water molecules, probed by SFG. The fast T1 at negatively charged surface begins to slow down by screening of the penetration of surface electric field via adding salt which suggests the primary reason for similar vibrational dynamics of water at charged interface with bulk water is the penetration of electric field. By decoupling of OH of HDO in D2O, a frequency dependent vibrational lifetime is observed with faster T1 at the red compared to the blue side of the hydrogen bond spectral region. This correlates with the redshift of the SFG spectra with increasing charged surface and is consistent with a theoretical model that relates the vibrational lifetime to the strength of the hydrogen bond network.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.