Wayland, Bradford B.; Zdilla, Michael J., 1978-; Wunder, Stephanie L.; Cannon, Kevin C. (Temple University. Libraries, 2012)
      Environmental and energy issues have stimulated renewed interest in utilizing both water and methanol as reagents and reaction mediums. Our current interest is to evaluate the scope of group nine organometallics and establish thermodynamic parameters for their reactivity in aqueous solvent. A comprehensive thermodynamic database for a wide scope of organo-rhodium transformations in a range of reaction media including benzene, water, and methanol has been well established by our group. Aqueous solutions of rhodium porphyrin have been determined to manifest an exceptional range of substrate reactions with carbon monoxide, dihydrogen, olefins, methanol and aldehydes. This study will focus on expansion of the thermodynamic database to all the group nine metals, particularly the iridium porphyrin systems in both water and methanol. Substrate reactivity and development of new mechanistic strategies for the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives. Water/Methanol soluble porphyrin iridium complexes including iridium tetrakis(p-sulfonatophenyl)porphyrin ((TSPP)Ir) and iridium tetrakis(3,5-sulfonatomesityl)porphyrin ((TMPS)Ir) derivatives can be prepared by sulfonation of tetra phenyl porphyrin (H2TPP) and tetra mesityl porphyrin (H2TMP). The reactivity of dihydrogen with aqueous solutions of iridium(III) tetrakis(p-sulfonatophenyl)porphyrin ((TSPP)Ir(III)) complexes produce equilibrium distributions between six iridium species including iridium hydride ([(TSPP)Ir-D(D2O)]-4), iridium(I) ([(TSPP)IrI(D2O)]-5), and iridium (II) dimer ([(TSPP)IrII(D2O)]2-8) complexes. Each of these types of iridium porphyrin species including Ir(I), Ir(II), Ir(III), Ir-H, and Ir-OH function as precursors for a range of organometallic substrate reactions. A primary objective is to define the quantitative relationships pertaining to the distribution of species in aqueous solution as a function of the dihydrogen and hydrogen ion concentrations through direct measurement of five equilibrium constants along with free energy changes of coordinated water and free energy changes of reactions of dihydrogen in water. Reactivity, kinetics and evaluation of equilibrium thermodynamics, including the reactions of iridium hydroxide and methoxide with olefins to produce beta-hydroxyalkyl and beta-methoxyalkyl complexes, reactions of iridium hydride and olefins to produce iridium alkyl complexes, and reactions of iridium hydride with carbon monoxide to produce iridium formyl [Ir-CHO] complexes are also objectives of this research. Another research goal is the design and synthesis of diporphyrin ligands that form dimetal complexes capable of preorganizing transition states for substrate reactions that involve two metal centers. Dirhodium dimetalloradical complexes are observed to manifest large rate increases over mono-metalloradical activation reactions of hydrogen, methane, and other small molecule substrates. In this study, synthesis of diporphyrin (bisporphyrin) ligands and other ligands which will permit dimetallo complexes like anti-aromatic [14]annulene and low steric porphine ligands will be also be examined.